Feeds:
Posts
Comments

Posts Tagged ‘Finavera’

Publisher’s Note:  Feb 09, 2009 – Not only has Finavera surrendered their Makah Bay license noted below, they also announced surrendering the Humboldt County, California Preliminary Permit to explore wave energy:

“Finavera Renewables has filed applications to surrender its Federal Energy Regulatory Commission license for the Makah Bay Wave Energy Pilot Project in Washington and the Humboldt County Preliminary Permit for a proposed wave energy project in California.”

MendoCoastCurrent readers may recall Finavera’s inability to secure CPUC funding for the Humboldt project; noted below capitalization, financial climate as key reasons in these actions.

MendoCoastCurrent, February 6, 2009

finavera-wavepark-graphicToday Finavera Renewables surrendered their Federal Energy Regulatory Commission (FERC) Makah Bay, Washington wave energy project license, commenting that the Makah Bay Finavera project “never emerged from the planning stages.”

And “due to the current economic climate and the restrictions on capital necessary to continue development of this early-stage experimental Project, the Project has become uneconomic.  Efforts by Finavera to transfer the license were not successful.  Therefore, Finavera respectfully requests that the <FERC> Commission allow it to surrender its license for the Project. ”

Back in early 2007, Finavera’s Makah Bay project looked like it would become the first U.S. and west coast project deployment of wave energy devices.  And this project also had a unique status based on Native American Indian land/coastal waters, so the rules of FERC, MMS were different due to sovereign status.

Then AquaBuoy, Finavera’s premier wave energy device, sank off the Oregon coast due to a bilge pump failure in late October 2007.  

Recently noted was Finavera’s comment that they are currently focusing their renewable energy efforts toward wind energy projects closer to their homebase in British Columbia, Canada and in Ireland.

Advertisements

Read Full Post »

Guardian.co.uk, December 3, 2008

wave-ocean-blue-sea-water-white-foam-photoWay back in Napoleonic Paris, a Monsieur Girard had a novel idea about energy: power from the sea. In 1799, Girard obtained a patent for a machine he and his son had designed to mechanically capture the energy in ocean waves. Wave power could be used, they figured, to run pumps and sawmills and the like.

These inventors would disappear into the mists of history, and fossil fuel would instead provide an industrializing world with almost all its energy for the next two centuries. But Girard et fils were onto something, say a growing number of modern-day inventors, engineers, and researchers. The heave of waves and the tug of tides, they say, are about to begin playing a significant role in the world’s energy future.

In the first commercial scale signal of that, last October a trio of articulated, cylinder-shaped electricity generators began undulating in the waves off the coast of Portugal. The devices look like mechanical sea snakes. (In fact, their manufacturer, Scotland’s Pelamis Wave Power Ltd., takes its name from a mythical ancient Greek sea serpent.) Each Pelamis device consists of four independently hinged segments. The segments capture wave energy like the handle of an old fashioned water pump captures the energy of a human arm: as waves rock the segments to and fro, they pump a hydraulic fluid (biodegradable, in case of spills) powerfully through a turbine, spinning it to generate up to 750,000 watts of electricity per unit. Assuming the devices continue to perform well, Portuguese utility Energis expects to soon purchase another 28 more of the generators.

The completed “wave farm” would feed its collective power onto a single high voltage sea-floor cable, adding to the Portuguese grid about 21 megawatts of electricity. That’s enough to power about 15,000 homes.

In a world where a single major coal or nuclear plant can produce more than 1,000 megawatts of electricity, it’s a modest start. But from New York’s East River to the offshore waters of South Korea, a host of other projects are in earlier stages of testing. Some, like Pelamis, rely on the motion of waves. Others operate like underwater windmills, tapping the power of the tides.

Ocean-powered technologies are in their infancy, still technologically well behind such energy alternatives as wind and solar. Necessarily designed to operate in an inherently harsh environment, the technologies remain largely unproven and — unless subsidized by governments — expensive. (Portugal is heavily subsidizing the Pelamis project, with an eye to becoming a major European exporter of clean green power in the future.) Little is known about the effects that large wave or tide farms might have on marine ecosystems in general.

Despite the uncertainties, however, proponents say the potential advantages are too striking to ignore. Eight hundred times denser than air, moving water packs a huge energy wallop. Like solar and wind, power from moving seas is free and clean. But sea power is more predictable than either wind or solar. Waves begin forming thousands of miles from coastlines and days in advance; tides rise and fall as dependably as the cycles of the moon. That predictability makes it easier to match supply with demand.

Roger Bedard, who leads ocean energy research at the U.S. utility-funded Electric Power Research Institute (EPRI) in Palo Alto, says there’s plenty of reason for optimism about the future of what he calls “hydrodynamic” power. Within a decade, he says, the U.S. could realistically meet as much as 10% of its electricity needs from hydrodynamic power. As a point of reference, that’s about half of the electricity the U.S. produces with nuclear power today. Although he acknowledges that initial sea-powered generation projects are going to be expensive, Bedard believes that as experience grows and economies of manufacturing scale kick in, hydrodynamic power will follow the same path toward falling costs and improving technologies as other alternatives.

“Look at wind,” he says. “A kilowatt hour from wind cost fifty cents in the 1980s. Now it’s about seven cents.” (That’s about the same as producing electricity with natural gas, and only about three cents more than coal, the cheapest — and dirtiest — U.S. energy choice. Any future tax on carbon emissions could narrow that gap even more, as would additional clean-power subsidies.)

For some nations, wave and tide power could pack an even bigger punch. Estimates suggest, for instance, that the choppy seas surrounding the United Kingdom could deliver as much as 25% of its electricity. British alternative energy analyst Thomas W. Thorpe believes that on a worldwide basis, waves alone could produce as much as 2,000 terawatt hours of electricity, as much as all the planet’s major hydroelectric plants generate today.

Although none are as far along as Pelamis, most competing wave-power technologies rely not on the undulations of mechanical serpents, but instead on the power captured by the vertical bobbing of large buoys in sea swells. Ocean Power Technologies (OPT), based in New Jersey, drives the generators in its PowerBuoy with a straightforward mechanical piston. A stationary section of the mostly submerged, 90-foot buoy is anchored to the ocean floor; a second section simply moves up and down with the movement of sea swells, driving pistons that in turn drive an electrical generator. The Archimedes Wave Swing, a buoy-based system developed by Scotland’s AWS Ocean Energy, harnesses the up-and-down energy of waves by pumping air to spin its turbines. Vancouver-based Finavera Renewables uses seawater as its turbine-driving hydraulic fluid.

Although Pelamis beat all of these companies out of the commercialization gate, OPT appears to be right behind, with plans to install North America’s first commercial-scale wave power array of buoys off the coast of Oregon as early as next year. That array — occupying one square-mile of ocean and, like other wave power installations, located far from shipping lanes — would initially produce 2 megawatts of power. OPT also announced last September an agreement to install a 1.4-megawatt array off the coast of Spain. An Australian subsidiary is in a joint venture to develop a 10-megawatt wave farm off the coast of Australia.

Meanwhile, Pelamis Wave Power plans to install more of its mechanical serpents — three megawatts of generating capacity off the coast of northwest Scotland, and another five-megawatt array off Britain’s Cornwall coast.

The Cornwall installation will be one of four wave power facilities plugged into a single, 20-megawatt underwater transformer at a site called “Wave Hub.” Essentially a giant, underwater version of a socket that each developer can plug into, Wave Hub — which will be connected by undersea cable to the land-based grid — was designed as a tryout site for competing technologies. OPT has won another of the four Wave Hub berths for its buoy-based system.

Other innovators are trying to harness the power of ocean or estuarine tides. Notably, in 2007, Virginia’s Verdant Power installed on the floor of New York’s East River six turbines that look, and function, much like stubby, submerged windmills, their blades — which are 16 feet in diameter — turning at a peak rate of 32 revolutions per minute. The East River is actually a salty and powerful tidal straight that connects Long Island Sound with the Atlantic Ocean. Although the “underwater windmills” began pumping out electricity immediately, the trial has been a halting one. The strong tides quickly broke apart the turbines’ first- (fiberglass and steel) and second- (aluminum and magnesium) generation blades, dislodging mounting bolts for good measure.

Undeterred, in September Verdant Power began testing new blades made of a stronger aluminum alloy. If it can overcome the equipment-durability problems, the company hopes to install as many as 300 of its turbines in the East River, enough to power 10,000 New York homes.

A scattering of similar prototype “underwater windmill” projects have been installed at tidal sites in Norway, Northern Ireland, and South Korea. (In addition, interest in moving into freshwater sites is growing. Verdant itself hopes to install its turbines on the St. Lawrence River. At least one other company, Free Flow Power of Massachusetts, has obtained Federal Energy Regulatory Commission permits to conduct preliminary studies on an array of sites on the Mississippi River south of St. Louis.)

The environmental benefits of hydrodynamic power seem obvious: no carbon dioxide or any other emissions associated with fossil-fuel-based generation. No oil spills or nuclear waste. And for those who object to wind farms for aesthetic reasons, low-profile wave farms are invisible from distant land; tidal windmill-style turbines operate submerged until raised for maintenance.

There are, however, environmental risks associated with these technologies.

New York state regulators required Verdant Power to monitor effects of their its turbines on fish and wildlife. So far, sensors show that fish and water birds are having no trouble avoiding the blades, which rotate at a relatively leisurely 32 maximum revolutions per minute. In fact the company’s sensors have shown that fish tend to seek shelter behind rocks around the channel’s banks and stay out of the central channel entirely when tides are strongest.

But a host of other questions about environment effects remain unanswered. Will high-voltage cables stretching across the sea from wave farms somehow harm marine ecosystems? Will arrays of hundreds of buoys or mechanical serpents interfere with ocean fish movement or whale migrations? What effect will soaking up large amounts of wave energy have on shoreline organisms and ecosystems?

“Environmental effects are the greatest questions right now,” EPRI’s Bedard says, “because there just aren’t any big hydrodynamic projects in the world.”

Projects will probably have to be limited in size and number to protect the environment, he says – that’s a big part of the reason he limits his “realistic” U.S. estimate to 10% of current generation capacity. But the only way to get definitive answers on environmental impact might be to run the actual experiment — that is, to begin building the water-powered facilities, and then monitor the environment for effects.

Bedard suggests that the way to get definitive answers will be to build carefully on a model like Verdant’s: “Start very small. Monitor carefully. Build it a little bigger and monitor some more. I’d like to see it developed in an adaptive way.”

Read Full Post »

MICHELLE MA, Seattle Times, November 17, 2008

What started out as a mad dash to extract energy from the ocean’s waves and tides has slowed to a marathoner’s pace — complete with a few water breaks and sprained ankles along the way.

In the past three years, more than 100 preliminary permits have been issued nationally for wave and tidal energy projects, and nearly 100 more are pending approval. But only one has won a license to operate — a small wave energy development off Washington’s northwest coast.

That project is still awaiting state and federal permits, and its British Columbia-based developer, Finavera Renewables, doesn’t know when the first devices will go in the water. It doesn’t help that a wave power buoy the company was testing off the Oregon coast unexpectedly sank last year.

Tapping the power of waves and tidal currents to generate electricity is promoted as one of many promising alternatives to the fossil fuels that contribute to global warming.

But no one knows exactly how the technologies will behave in the water, whether animals will get hurt, or if costs will pencil out. The permitting process is expensive and cumbersome, and no set method exists for getting projects up and running.

“The industry is really young, and everything is hodgepodged right now,” said Jim Thomson, an oceanographer at the University of Washington’s Applied Physics Lab who is involved in tidal research.

A new report that collected findings from dozens of scientists raises concerns about the impact wave energy developments could have on the ocean and its critters. Wave energy buoys could alter the food chain or disrupt migrations, the report says.

Still, developers, regulators and researchers are moving forward. A 2.25-megawatt project off the coast of Portugal went on line this fall, becoming the world’s first commercial wave energy development in operation. It can supply 1,500 households with electricity.

The first commercial wave energy park in the U.S. could go in off Reedsport, Ore., within the next two years.

Tidal energy has yet to go commercial, but devices have been tested in Ireland and Canada. Turbines have been placed in New York’s East River, and a demonstration project is planned for the Bay of Fundy off Northeastern U.S.

In the Northwest, the Snohomish County Public Utility District (PUD) has narrowed its search for tidal power sites in Puget Sound, although the PUD doesn’t expect to have a test project in the water for another two years.

Race to develop

Dozens of developers have staked claim to plots in the ocean and in waterways that could provide wave and tidal energy. But despite the jostle for space, getting projects off dry land has proved difficult.

Wave power generators use the up-and-down motion of the ocean’s swells to produce electricity. Tidal generators act like underwater windmills, spinning as the tides move in and out.

To get small projects in the water quicker federal regulators recently created a five-year pilot license for tidal and wave developments. That’s meant to help developers gather data they need to launch future projects, said Federal Energy Regulatory Commission spokeswoman Celeste Miller.

Yet even with a more streamlined process, no one has applied for the pilot license, Miller said. Finavera received its license for the 1-megawatt Makah Bay wave project before this option became available.

Given the unknowns in a young industry, it’s not surprising projects are taking longer than some developers would like, said Myke Clark, senior vice president of business development for Finavera.

His company encountered another hurdle when Pacific Gas and Electric’s agreement to buy power from a planned Finavera wave energy project off California was rejected last month by the state’s Public Utilities Commission.

Regulators said the rates were too high and the buoy technology not yet ready.

Clark said the decision wouldn’t affect Finavera’s Makah Bay project.

Research under way

Researchers from the University of Washington and Oregon State University hope that a new national marine renewable energy research center in the Northwest will help answer questions about tidal and wave energy.

A federal grant provides $1.25 million annually for up to five years. The UW will continue research on tidal energy in Puget Sound, while OSU will focus on wave energy.

“The feeling is that a lot of questions being asked now are only questions that can be answered with a responsible pilot [project],” said Brian Polagye, who is pursuing his doctorate in mechanical engineering at the UW.

Locally, researchers want to see where marine life in Puget Sound congregates and to create a standard way to evaluate sites around the country to determine which would be good candidates for tidal energy projects.

Admiralty Inlet, between Whidbey Island and Port Townsend, is the likely spot for the Snohomish County PUD’s small test project set to launch at least two years from now, said Craig Collar, the PUD’s senior manager of energy resource development.

The inlet’s tides are strong, and the area is large enough to accommodate a tidal project without interfering with other activities such as diving and ferry traffic.

Finavera wants to install four wave energy buoys in Makah Bay in the Olympic Coast National Marine Sanctuary to test its technology. Developers also plan to monitor the project for effects on wildlife and shoreline habitat, keeping an eye on federally listed species such as the marbled murrelet, a small bird that dives for food.

Finavera doesn’t intend to continue the project after its five-year license expires. Still, if the company can negotiate a purchasing agreement with the Clallam County Public Utility District, homes in the area could use the wave generated power while the project is in the water, Clark said.

The Makah Nation wants to see what effect the project might have on the environment before deciding whether wave energy is a viable long-term option, said Ryland Bowechop, tourism and economic-development planner for the tribe.

The buoys would sit just offshore from the tribal headquarters in Neah Bay.

“We are always concerned because our livelihood is the ocean,” Bowechop said.

Concerns linger

The environmental effects of wave and tidal energy are largely unknown and require more studies, dozens of scientists concluded after meeting a year ago at OSU’s Hatfield Marine Science Center in Newport, Ore.

The group was concerned that electromagnetic cables on the ocean floor could affect sea life, and that buoys could interfere with whale and fish migration.

Large buoys might actually attract more fish, but the marine ecosystem could be altered if more predators move in. Buoys also could disrupt natural currents and change how sediment is moved. Shorelines might be affected as energy is taken from the waves.

Even if environmental concerns are checked, costs to extract the power remain high. Wave energy costs at least 20 cents per kilowatt hour to generate, compared with 4 cents per kilowatt hour for wind power, said Annette von Jouanne, leader of OSU’s wave energy program. Wind energy used to be much more expensive 20 years ago.

In comparison, coal-generated power costs about 5 cents per kilowatt hour, and power from dams can be as low as 3 cents, said Roger Bedard, ocean energy leader with the nonprofit Electric Power Research Institute.

Tidal energy costs are harder to determine because there aren’t any projects trying to sell electricity, Bedard said.

Fishermen have their own worries. They fear that wave and tidal projects could further reduce access to fishing grounds, said Dale Beasley, a commercial fisherman in Ilwaco, Pacific County, and president of the Columbia River Crab Fisherman’s Association.

“There’s so many things coming at the ocean right now,” he said.

Beasley says the industry wants a say in how wave and tidal energy projects are developed.

“Coastal communities are going to have to figure out a way to deal with this, and if they don’t, the character of the coast will change dramatically,” he said.

Read Full Post »

RenewableEnergyWorld.com, November 10, 2008

Finavera Renewables Inc. has announced that it plans to raise US $1,002,000 through a non-brokered private placement of 20,040,000 units at a price of $0.05 per unit. Each unit consists of one common share and one-half of a share purchase warrant, with each full warrant exercisable at $0.10 for 12 months from the date of closing of the private placement.

Proceeds of the placement will be used for the continued development of Finavera Renewables’ wind energy projects, primarily for the B.C. Peace Region projects and for general working capital.

The company filed the US $0.05 price reservation with the TSX Venture Exchange on November 3, 2008. Proceeds of the placement will be used for the continued development of Finavera Renewables’ wind energy projects, primarily for the B.C. Peace Region projects and for general working capital, Finavera said.

The company also announced that is has applied to extend the term of all 21,000,000 share purchase warrants issued pursuant to a December 2007 private placement. The warrants, exercisable at US $0.15 per share and initially issued for a term of twelve months, have been extended an additional year.

The move to fund Finavera’s wind businesses comes after the California Public Utilities Commission (CPUC) decision to not allow a power purchase agreement between Finavera and PG&E for an ocean energy project to move forward. The CPUC cited concerns about the price of the electricity coming from the project specified under the PPA.

Read Full Post »

MATT NAUMAN, San Jose Mercury News, October 27, 2008

The California Public Utilities Commission rejected a Pacific Gas & Electric contract for wave energy, saying the utility was going to pay too much for a technology that’s still largely experimental.

Last December, PG&E said it would be the first utility in the nation to get energy from ocean waves after signing a power purchase agreement with Finavera Renewables, which planned to operate a “wave farm” about 21/2 miles off the coast of Eureka. The deal was for 2 megawatts of power starting in 2012.

But the California PUC this month nixed the deal, saying wave energy technology was “in a nascent stage” and that Finavera’s system was “not currently viable.” The commission noted that a prototype buoy deployed by Finavera off the Oregon coast in 2007 sank before its six week test period was concluded.

The CPUC, which oversees power deals and rate hikes from the state’s big utilities, also said the San Francisco utility was going to pay too high a price for the wave-energy contract. The financial terms of power deals are not released publicly.

“We respectfully disagree with the decision,” PG&E spokeswoman Jennifer Zerwer said. The utility will continue to pursue wave energy projects, she said, including through its Emerging Renewables Resource Program proposal that would fund two wave projects off the Mendocino County and Humboldt County coast that’s currently waiting PUC approval.

In a letter to the PUC, Brian Cherry, PG&E’s vice president of regulatory relations, said the rejection of the deal would have “a chilling effect on wave development in California.” The rejection will send wave companies to states other than California, he wrote.

Finavera Renewables, based in Vancouver, British Columbia, said the decision puts California “out of step” with the policies of the federal government, other states and cities. CEO Jason Bak said Finavera would try to form a private wave-energy consortium to diversify the risk and attract more funding for wave-energy technology. He also said the company would now focus on its wind projects in Canada and Ireland.

A report released Monday suggested that wave energy has great potential to be a source of renewable power. While only about 10 megawatts of ocean power have been installed worldwide to date, a report by researcher Greentech Media and the nonprofit Prometheus Institute found that could grow to 1 gigawatt (1,000 megawatts) of power by 2015. In California, 1 megawatt of power is enough to provide electricity for 750 homes.

More than $4 billion will be invested in ocean-wave research and the construction of wave farms over the next six years, the report says.

Daniel Englander, co-author of that report, doesn’t see the CPUC decision as a death blow for wave energy projects. “PG&E picked the wrong company,” he said. “Finavera isn’t a bad company, it’s just that their technology isn’t at a stage where it’s ready to deliver power commercially.”

Still, he expects several companies will have production-ready ocean power systems capable of delivering 2 megawatts or more within five years.

Read Full Post »

KATE GALBRAITH, The New York Times, September 23, 2008

For years, technological visionaries have painted a seductive vision of using ocean tides and waves to produce power. They foresee large installations off the coast and in tidal estuaries that could provide as much as 10% of the nation’s electricity.

But the technical difficulties of making such systems work are proving formidable. Last year, a wave-power machine sank off the Oregon coast. Blades have broken off experimental tidal turbines in New York’s turbulent East River. Problems with offshore moorings have slowed the deployment of snakelike generating machines in the ocean off Portugal.

Years of such problems have discouraged ocean-power visionaries, but have not stopped them. Lately, spurred by rising costs for electricity and for the coal and other fossil fuels used to produce it, they are making a new push to overcome the barriers blocking this type of renewable energy.

The Scottish company Pelamis Wave Power plans to turn on a small wave-energy farm — the world’s first — off the coast of Portugal by year’s end, after fixing the broken moorings. Finavera Renewables, a Canadian company that recently salvaged its sunken, $2.5 million Oregon wave-power machine, has signed an agreement with Pacific Gas & Electric to produce power off the California coast by 2012. And in the East River, just off Manhattan, two newly placed turbines with tougher blades and rotors are feeding electricity into a grocery store and parking garage on Roosevelt Island.

“It’s frustrating sometimes as an ocean energy company to say, yeah, your device sank,” said Jason Bak, chief executive of Finavera. “But that is technology development.”

Roughly 100 small companies around the world are working on converting the sea’s power to electricity. Many operate in Europe, where governments have pumped money into the industry. Companies and governments alike are betting that over time, costs will come down. Right now, however, little electricity is being generated from the ocean except at scattered test sites around the world.

The East River — despite its name, it is really a tidal strait with powerful currents — is the site of the most advanced test project in the United States.

Verdant Power, the company that operates it, was forced to spend several years and millions of dollars mired in a slow permit process, even before its turbine blades broke off in the currents. The company believes it is getting a handle on the problems. Verdant is trying to perfect its turbines and then install 30 of them in the East River, starting no later than spring 2010, and to develop other sites in Canada and on the West Coast.

Plenty of other start-ups also plan commercial ocean-power plants, at offshore sites such as Portugal, Oregon and Wales, but none have been built.

Ocean-power technology splits into two broad categories, tidal and wave power. Wave power, of the sort Finavera is pursuing, entails using the up and down motions of the waves to generate electricity. Tidal power — Verdant’s province — involves harnessing the action of the tides with underwater turbines, which twirl like wind machines.

(Decades-old tidal technologies in France and Canada use barrage systems that trap water at high tide; they are far larger and more obtrusive than the new, below-waterline technologies.)

A third type of power, called ocean thermal, aims to exploit temperature differences between the surface and deep ocean, mainly applicable in the tropics.

Ocean power has more potential than wind power because water is about 850 times denser than air, and therefore packs far more energy. The ocean’s waves, tides and currents are also more predictable than the wind.

The drawback is that seawater can batter and corrode machinery, and costly undersea cables may be needed to bring the power to shore. And the machines are expensive to build: Pelamis has had to raise the equivalent of $77 million.

Many solar start-ups, by contrast, need as little as $5 million to build a prototype, said Martin Lagod, co-founder of Firelake Capital Management, a Silicon Valley investment firm. Mr. Lagod looked at investing in ocean power a few years ago and decided against it because of the long time horizons and large capital requirements.

General Electric, which builds wind turbines, solar panels and other equipment for virtually every other type of energy, has stayed clear of ocean energy. “At this time, these sources do not appear to be competitive with more scalable alternatives like wind and solar,” said Daniel Nelson, a G.E. spokesman, in an e-mail message. (An arm of G.E. has made a small investment in Pelamis.)

Worldwide, venture capital going to ocean-power companies has risen from $8 million in 2005 to $82 million last year, according to the Cleantech Group, a research firm. However, that is a tiny fraction of the money pouring into solar energy and biofuels.

This month the Energy Department doled out its first major Congressionally-funded grants since 1992 to ocean-power companies, including Verdant and Lockheed Martin, which is studying ocean thermal approaches.

Assuming that commercial ocean-power farms are eventually built, the power is likely to be costly, especially in the near term. A recent study commissioned by the San Francisco Public Utility Commission put the cost of harnessing the Golden Gate’s tides at 85 cents to $1.40 a kilowatt-hour, or roughly 10 times the cost of wind power. San Francisco plans to forge ahead regardless.

Other hurdles abound, including sticky environmental and aesthetic questions. In Oregon, crabbers worry that the wave farm proposed by Ocean Power Technologies, a New Jersey company, would interfere with their prime crabbing grounds.

“It’s right where every year we deploy 115,000 to 120,000 crab pots off the coast for an eight-month period to harvest crab,” said Nick Furman, executive director of the Oregon Dungeness Crab Commission. The commission wants to support renewable energy, but “we’re kind of struggling with that,” Mr. Furman said

George Taylor, chief executive of Ocean Power Technologies, said he did not expect “there will be a problem with the crabs.”

In Washington State, where a utility is studying the possibility of installing tidal power at the Admiralty Inlet entrance to Puget Sound, scuba divers are worried, even as they recognize the need for clean power.

Said Mike Racine, president of the Washington Scuba Alliance: “We don’t want to be dodging turbine blades, right?”

Read Full Post »

TERRY DILLMAN, Newport News-Times, July 25, 2008

It sank to the bottom in 150 feet of water just one day before its planned retrieval. After nine months of waiting for the right weather and ocean conditions, divers and salvage vessels are currently on site to assist in the rebirth of a 75-foot, 40-ton wave energy buoy.

Developed by Finavera Renewables based in Vancouver, British Columbia, and built by Portland-based Oregon Iron Works, the Sept. 6, 2007 deployment of the Aquabuoy 2.0 wave energy converter – the first-ever wave energy test device off the Oregon coast – generated enthusiasm that has never waned, despite the Oct. 28 plunge into the ocean’s nether land. At the time, Finavera spokesman Myke Clark said engineers had gleaned plenty of data via wireless and satellite technology from onboard diagnostic equipment powered by solar panels and small wind turbines on the buoy.

“It performed exactly as we thought it would perform,” he noted.

Except for the sinking, the cause of which remains uncertain. The buoy began taking on water, and the bilge pump failed just one day before engineers were set to tow it back to shore. Finavera crews removed the anchor, mooring lines, tackle, and related paraphernalia, but had to leave the $2 million piece of technology itself resting on the ocean floor beneath the surface of the Oregon State University (OSU) wave energy test site located about 2.5 miles off the shores of Agate Beach.

Harsh weather and ocean conditions wiped out any hope of retrieving the buoy until now, despite everyone’s best efforts to recover it sooner.

Finavera officials notified everyone concerned as soon as they discovered the buoy’s disappearance, including Fishermen Involved in Natural Energy (FINE), a local advisory panel established in February 2007 by the Lincoln County commissioners. This panel played a key role in the wave energy test site selection process.

A week after the buoy sank, FINE members, county leaders, and others asked Finavera to explore any and all options to remove the buoy as soon as possible. At the time, Kevin Banister, Finavera’s vice president of business development, ocean energy, said they “pledged to explore” the options.

“We’re just as eager to get it out of the water as anybody,” he told the News-Times. “But we can’t make any guarantees.”

Even in good weather and calm waters, any ocean operation is tricky business. The Salvage Chief and related vessels began operations last week, with divers removing sand, cutting chain, and preparing the buoy for recovery. Banister told the News-Times the buoy “hasn’t moved” when discussing the situation earlier this week.

“It’s a complex operation,” he added. “It will take some time – as much as a week – to complete.”

That estimate is already off. Originally, salvage managers said they could tow the buoy in between 1 p.m. and 3 p.m. Wednesday. The first of the two pieces – the 10-foot buoy that bobs above the ocean surface – was towed into Yaquina Bay at about 2 a.m. Thursday, along with a Coast Guard escort, and taken to a shipyard about four miles upriver to await later transport to the company’s facilities. Salvage crews are working on getting the second piece to the surface and back to port.

Clark said the buoy’s collision with the seafloor at the end of its 150-foot drop damaged it, forcing divers to “cut the supports (of the accelerator tube) to make it easier to bring up.”

Kaety Hildenbrand from OSU’s Oregon Sea Grant Marine Fisheries Extension Service said the Coast Guard “is putting a 500-yard restriction on the vessels while they are towing.” Finavera and Salvage Chief officials ask that everyone steer clear of the work site.

Finavera developers said they would use the data gleaned from the buoy before its demise to “move forward with technological development” and create “the next generation” device – one as unsinkable as they can make it.

Read Full Post »

Older Posts »