Posts Tagged ‘EPRI’

Globe.Net, October 27, 2009

President Barack Obama has announced the largest single energy grid modernization investment in U.S. history, funding a broad range of technologies that will create tens of thousands of jobs, save energy and allow consumers to cut their electric bills.

Speaking at Florida Power and Light’s (FPL) DeSoto Next Generation Solar Energy Center, President Barack Obama today announced the largest single energy grid modernization investment in U.S. history, funding a broad range of technologies that will spur the nation’s transition to a smarter, stronger, more efficient and reliable electric system.

The $3.4 billion in grant awards – part of the American Reinvestment and Recovery Act – will be matched by industry funding for a total public-private investment worth over $8 billion. Full listings of the grant awards by category and state are available here and a map of the awards is available here.

An analysis by the Electric Power Research Institute (EPRI) estimates that the implementation of smart grid technologies could reduce electricity use by more than 4% by 2030.  That would mean a savings of $20.4 billion for businesses and consumers around the country. One-hundred private companies, utilities, manufacturers, cities and other partners received Smart Grid Investment Grant awards today, including FPL, which will use its $200 million in funding to install over 2.5 million smart meters and other technologies that will cut energy costs for its customers.

The awards announced represent the largest group of Recovery Act awards ever made in a single day and the largest batch of Recovery Act clean energy grant awards to-date. The announcements include:

  • Empowering Consumers to Save Energy and Cut Utility Bills — $1 billion. These investments will create the infrastructure and expand access to smart meters and customer systems so that consumers will be able to access dynamic pricing information and have the ability to save money by programming smart appliances and equipment to run when rates are lowest.
  • Making Electricity Distribution and Transmission More Efficient — $400 million. The Administration is funding several grid modernization projects across the country that will significantly reduce the amount of power that is wasted from the time it is produced at a power plant to the time it gets to your house.  By deploying digital monitoring devices and increasing grid automation, these awards will increase the efficiency, reliability and security of the system, and will help link up renewable energy resources with the electric grid.
  • Integrating and Crosscutting Across Different “Smart” Components of a Smart Grid — $2 billion. Much like electronic banking, the Smart Grid is not the sum total of its components but how those components work together.  The range of projects funded will incorporate various components into one system – including smart meters, smart thermostats and appliances, syncrophasors, automated substations, plug in hybrid electric vehicles, renewable energy sources, etc.
  • Building a Smart Grid Manufacturing Industry — $25 million. These investments will help expand our manufacturing base of companies that can produce the smart meters, smart appliances, synchrophasors, smart transformers, and other components for smart grid systems in the United States and around the world – representing a significant and growing export opportunity for our country and new jobs for American workers.

More details on the proposed projects are available here. Click here for the full test of remarks by President Obama on Recovery Act Funding for Smart Grid Technology.


Read Full Post »

MendoCoastCurrent, September 21, 2009

wave-ocean-blue-sea-water-white-foam-photoThe U.S. Department of Energy recently announced that it is providing $14.6 million in funding for 22 water power projects to move forward in the commercial viability, market acceptance and environmental performance of new marine and hydrokinetic technologies as well as conventional hydropower plants.

The selected projects will further the nation’s supply of domestic clean hydroelectricity through technological innovation to capitalize on new sources of energy, and will advance markets and research to maximize the nation’s largest renewable energy source.

“Hydropower provides our nation with emissions-free, sustainable energy.  By improving hydropower technology, we can maximize what is already our biggest source of renewable energy in an environmentally responsible way.  These projects will provide critical support for the development of innovative renewable water power technologies and help ensure a vibrant hydropower industry for years to come,” said Secretary Chu.

Recipients include the Electric Power Research Institute (EPRI) in Palo Alto, California, receiving $1.5 million, $500,000 and $600,000 for three projects with the Hydro Research Foundation in Washington, DC, receiving to $1 million.

According to the Dept. of Energy, selected projects address five topic areas:

  • Hydropower Grid Services – Selection has been made for a project that develops new methods to quantify and maximize the benefits that conventional hydropower and pumped storage hydropower provide to transmission grids.
  • University Hydropower Research Program – Selected projects will be for organizations to establish and manage a competitive fellowship program to support graduate students and faculty members engaged in work directly relevant to conventional hydropower or pumped storage hydropower.
  • Marine & Hydrokinetic Energy Conversion Device or Component Design and Development – Selections are for industry-led partnerships to design, model, develop, refine, or test a marine and hydrokinetic energy conversion device, at full or subscale, or a component of such a device.
  • Marine and Hydrokinetic Site-specific Environmental Studies – Selected projects are for industry-led teams to perform environmental studies related to the installation, testing, or operation of a marine and hydrokinetic energy conversion device at an open water project site.
  • Advanced Ocean Energy Market Acceleration Analysis and Assessments – Selections are for a number of energy resource assessments across a number of marine and hydrokinetic resources, as well as life-cycle cost analyses for wave, current and ocean thermal energy conversion technologies.

For a complete list of the the funded projects, go here.

Read Full Post »

ELIZABETH RUSCH, Smithsonian Magazine, July 2009

von-Jouanne-Oregon-Otter-Rock-BeachShe was in the water when the epiphany struck. Of course, Annette von Jouanne was always in the water, swimming in lakes and pools as she was growing up around Seattle, and swimming distance freestyle competitively in high school and college meets. There’s even an exercise pool in her basement, where she and her husband (a former Olympic swimmer for Portugal) and their three kids have spent a great deal of time…swimming.

But in December 1995 she was bodysurfing in Hawaii over the holidays. She’d just begun working as an assistant professor of electrical engineering at Oregon State University. She was 26 years old and eager to make a difference—to find or improve upon a useful source of energy, preferably one that wasn’t scarce or fleeting or unpredictable or dirty. The sun was going down. The wind was dying. She was bobbing in the swells.

“As the sun set, it hit me: I could ride waves all day and all night, all year long,” says von Jouanne. “Wave power is always there. It never stops. I began thinking that there’s got to be a way to harness all the energy of an ocean swell, in a practical and efficient way, in a responsible way.”

Today, von Jouanne is one of the driving forces in the fast-growing field of wave energy—as well as its leading proponent. She will explain to anyone who will listen that unlike wind and solar energy, wave energy is always available. Even when the ocean seems calm, swells are moving water up and down sufficiently to generate electricity. And an apparatus to generate kilowatts of power from a wave can be much smaller than what’s needed to harness kilowatts from wind or sunshine because water is dense and the energy it imparts is concentrated.

All that energy is also, of course, destructive, and for decades the challenge has been to build a device that can withstand monster waves and gale-force winds, not to mention corrosive saltwater, seaweed, floating debris and curious marine mammals. And the device must also be efficient and require little maintenance.

Still, the allure is irresistible. A machine that could harness an inexhaustible, nonpolluting source of energy and be deployed economically in sufficient numbers to generate significant amounts of electricity—that would be a feat for the ages.

Engineers have built dozens of the machines, called wave energy converters, and tested some on a small scale. In the United States, waves could fuel about 6.5% of today’s electricity needs, says Roger Bedard of the Electric Power Research Institute, an energy think tank in Palo Alto, California. That’s the equivalent of the energy in 150 million barrels of oil—about the same amount of power that is produced by all U.S. hydroelectric dams combined—enough to power 23 million typical American homes. The most powerful waves occur on western coasts, because of strong west-to-east global winds, so Great Britain, Portugal and the West Coast of the United States are among the sites where wave energy is being developed.

Aside from swimming, von Jouanne’s other passion as a youngster was learning how things work. It started with small appliances. An alarm clock broke. She unscrewed the back, fixed the mechanism and put it back together. She was about 8 years old. “That was so exciting for me,” she says. She moved on to calculators and then to a computer she bought with money from her paper route. One day, she waited for her parents to leave the house so she could take apart the television and reassemble it before they returned. (Von Jouanne cautions kids not to do as she did: “there is a high-voltage component.”)

When her brothers, older by eight and ten years, came home for college breaks, she pored over their engineering textbooks. (An older sister pursued a business degree.) “Reading them confirmed that, yup, this is what I want to do,” she recalls.

She studied electrical engineering as an undergraduate at Southern Illinois University and for her doctorate at Texas A&M University. She was often one of the few women in a class. “I never saw myself as a woman engineer,” she says. “I saw myself as an engineer trying to make things better for the world.”

At Oregon State University, she related her wave-tossed epiphany to Alan Wallace, a professor of electrical engineering who shared her fascination with the ocean’s power. “We started saying, there’s got to be a way to harness this energy,” she recalls. They studied the wave energy converters then being produced and looked up centuries-old patents for contraptions to extract power from waves. Some resembled windmills, animal cages or ship propellers. A modern one looked like a huge whale. The gadgets all had one problem in common: they were too complicated.

Take, for example, a device called the Pelamis Attenuator, which was recently deployed for four months off the coast of Portugal by Pelamis Wave Power. It looks like a 500-foot-long red snake. As waves travel its length, the machine bends up and down. The bending pumps hydraulic fluid through a motor, which generates electricity. Complex machines like this are riddled with valves, filters, tubes, hoses, couplings, bearings, switches, gauges, meters and sensors. The intermediate stages reduce efficiency, and if one component breaks, the whole device goes kaput.

After analyzing the field, von Jouanne says, “I knew we needed a simpler design.”

Von Jouanne’s lab is named in memory of Wallace, who died in 2006, but the Wallace Energy Systems & Renewables Facility (WESRF) is familiarly known as “We Surf.” Painted in deep blues and grays and bearing murals of curling waves, the lab has been a research facility and testing ground for such innovative products as an all-electric naval ship, a hovercraft and the Ford Escape Hybrid engine. In one corner is a tall buoy that resembles a huge copper-top battery. Beside it another buoy looks like two cross-country skis with wire strung between them. The designs were among von Jouanne’s earliest. “Breakthroughs are almost always born of failures,” she says.

Her breakthrough was to conceive of a device that has just two main components. In the most recent prototypes, a thick coil of copper wire is inside the first component, which is anchored to the seafloor. The second component is a magnet attached to a float that moves up and down freely with the waves. As the magnet is heaved by the waves, its magnetic field moves along the stationary coil of copper wire. This motion induces a current in the wire—electricity. It’s that simple.

By early 2005, von Jouanne had engineered one of her prototypes and wanted to test whether it was waterproof. She hauled the wave energy converter to her basement, into a flume that circulates water to let her swim in place. Her daughter Sydney, then 6, sat on the prototype, much as a seal might cling to a real buoy. It floated.

Next she phoned a nearby wave pool, where people go to play in simulated waves.

“Do you rent out your pool?” she said.

“For how many people?” the attendant asked.

“Not many people—one wave energy buoy.”

The park donated two early mornings to her venture. Von Jouanne anchored the machine with ten 45-pound weights from a health club. It performed well in the playful waves, bobbing up and down without sinking.

Then came the real test, at one of the longest wave simulators in North America.

At the west end of the leafy Oregon State University campus, past the scholarly red-brick buildings, is a massive T-shaped steel shed in a giant paved lot. Though the building is 50 miles from the Pacific Ocean and well beyond the reach of killer tidal waves, a blue and white metal sign at its entrance says “Entering Tsunami Hazard Zone.”

When von Jouanne first brought a buoy to test in the 342-foot-long concrete flume at Oregon State’s Hinsdale Wave Research Laboratory, “things didn’t go as planned,” says Dan Cox, the facility’s director, with a laugh. Von Jouanne and co-workers plopped the buoy in the 15-foot-deep channel and buffeted it with two-, three- and four-foot waves. The first five-foot wave tipped it over.

“We had a ballast problem,” von Jouanne says somewhat sheepishly. She goes on, “We’re electrical engineers, and we really needed more help from ocean engineers, but to get them we needed more funding, and to get more funding we needed to show some success.”

Von Jouanne kept refining her buoys. A small group watched as a five-foot wave headed for one of her latest versions. As the buoy lifted with the surge, a 40-watt light bulb on top of it, powered by wave energy, lighted up. “We all cheered,” Cox recalls.

Route 20 winds from Oregon State to the coast though cedar and fir trees, following the Yaquina River. Near the mouth of the river is a sandy spit with low buildings decorated with oyster shells and gnarly driftwood. Breezes set halyards from the nearby marina clanking against metal masts. This is the home of Oregon State’s Hatfield Marine Science Center, devoted to research about marine ecosystems and ocean energy.

George Boehlert, a marine scientist and director of the center, looks out of his office at a field of undulating sea grass. “What we know now is what we don’t know,” says Boehlert, whose dirty blond curls resemble ocean waves. “Ocean energy is a fast-moving field and environmental researchers have a lot of questions.”

For instance, the buoys absorb energy from waves, reducing their size and power. Would shrunken swells affect sand movement and currents near shore, perhaps contributing to erosion?

Buoys, as well as the power cables that would connect to the electrical grid on-shore, emit electromagnetic fields. And mooring cables would thrum in the currents, like a guitar string. Might these disturbances confuse whales, sharks, dolphins, salmon, rays, crabs and other marine animals that use electromagnetism and sound for feeding, mating or navigation?

Would birds collide with the buoys or turtles become entangled in the cables?

Would anchors create artificial reefs that attract fish not normally found in that habitat?

Would deploying, maintaining and removing buoys disturb the seafloor or otherwise change the ocean environment?

“I want to know the answers to these questions, too,” von Jouanne says. “The last thing I want to do is harm the ocean and its beautiful creatures.” To study the environmental risks and allow wave energy engineers to test their inventions, she and colleagues at Oregon State, including Boehlert, are building a floating test berth nearby. It is scheduled to open next year and at its center will be a buoy full of instruments to collect data on how well wave energy converters are performing.

The test berth is part of a massive effort to move wave energy out of the lab and onto the electrical power grid. Through a new Energy Department-funded national marine renewable energy center, researchers from all over the country will have the chance to refine their inventions in the WESRF energy lab, test them in the Hinsdale wave flume and perfect them in the ocean. “This is what we need to do to fully explore wave energy as part of a renewable energy portfolio, for the state, the nation and the world,” von Jouanne says.

Boehlert and others say that even if wave energy has some local environmental impacts, it would likely be far less harmful than coal- and oil-fired power plants. “The effects of continuing to pump carbon into the atmosphere could be much worse for marine life than buoys bobbing in the waves,” he says. “We want ocean energy to work.”

Von Jouanne recently towed her best-performing buoy—her 11th prototype—out through Yaquina Bay and one and a half miles offshore. The buoy, which resembles a giant yellow flying saucer with a black tube sticking through the middle, was anchored in 140 feet of water. For five days it rose and fell with swells and generated around 10 kilowatts of power. In the next two to three years, Columbia Power Technologies, a renewable energy company that has supported von Jouanne’s research, plans to install a buoy generating between 100 and 500 kilowatts of electricity in the test berth off the coast of Oregon. See video of the device here.

“A few years ago,” Cox says of von Jouanne, “she was working on a shoestring. Now she has government getting behind her work and companies knocking at her door. That’s incredibly fast advancement that bodes well for the future of wave energy.”

Another of Von Jouanne’s inventions, the first of its kind, is a machine that tests wave energy converters without having to get them wet. A prototype buoy is secured inside a metal carriage that mimics the up-and-down motion of ocean waves. Electrical equipment monitors the power the buoy generates. The test bed looks like an elevator car in the middle of her lab.

Wave energy researchers from other institutions will be welcome to use von Jouanne’s test bed, but at the moment, it holds one of her own energy-converter buoys. A student sitting at a nearby computer commands the device to simulate waves 1 meter high traveling 0.6 meters per second with 6-second intervals between wave peaks.

“That’s a small summer wave,” von Jouanne says.

The machine hums, lurches and heaves like an amusement park ride.

As the buoy moves up and down, a gauge registers the juice it produces. The needle moves. One kilowatt, two, then three.

“That’s enough to power two houses,” says von Jouanne.

Read Full Post »

PETER ASMUS, Pike Research, June 17, 2009

wave-ocean-blue-sea-water-white-foam-photoThe earth is the water planet, so it should come as no great surprise that forms of water power have been one of the world’s most popular “renewable” energy sources. Yet the largest water power source of all – the ocean that covers three-quarters of earth – has yet to be tapped in any major way for power generation. There are three primary reasons for this:

  • The first is the nature of the ocean itself, a powerful resource that cannot be privately owned like land that typically serves as the foundation for site control for terrestrial power plants of all kinds;
  • The second is funding. Hydropower was heavily subsidized during the Great Depression, but little public investment has since been steered toward marine renewables with the exception of ocean thermal technologies, which were perceived to be a failure.
  • The third reason why the ocean has not yet been industrialized on behalf of energy production is that the technologies, materials and construction techniques did not exist until now to harness this renewable energy resource in any meaningful and cost effective way.

Literally hundreds of technology designs from more than 100 firms are competing for attention as they push a variety emerging ocean renewable options. Most are smaller upstart firms, but a few larger players – Scottish Power, Lockheed Martin and Pacific Gas & Electric — are engaged and seeking new business opportunities in the marine renewables space. Oil companies Chevron, BP and Shell are also investing in the sector.

In the U.S., the clear frontrunner among device developers is Ocean Power Technologies (OPT). It was the first wave power company to issue successful IPOs through the London Stock Exchange’s AIM market for approximately $40 million and then another on the U.S. Stock Exchange in 2007 for $100 million. OPT has a long list of projects in the pipeline, including the first “commercial” installation in the U.S. in Reedsport, Oregon in 2010, which could lead to the first 50 MW wave farm in the U.S. A nearby site in Coos Bay, Oregon represents another potential 100 MW deployment.

While the total installed capacity of emerging “second generation” marine hydrokinetic resources – a category that includes wave, tidal stream, ocean current, ocean thermal and river hydrokinetic resources – was less than 10 MW at the end of 2008, a recent surge in interest in these new renewable options has generated a buzz, particularly in the United Kingdom, Ireland, the United States, Portugal, South Korea, Australia, New Zealand and Japan, among other countries. It is expected that within the next five to eight years, these emerging technologies will become commercialized to the point that they can begin competing for a share of the burgeoning market for carbon-free and non-polluting renewable resources.

The five technologies covered in a new report by Pike Research are the following:

  • Tidal stream turbines often look suspiciously like wind turbines placed underwater. Tidal projects comprise over 90 percent of today’s marine kinetic capacity totals, but the vast majority of this installed capacity relies upon first generation “barrage” systems still relying upon storage dams.
  • Wave energy technologies more often look more like metal snakes that can span nearly 500 feet, floating on the ocean’s surface horizontally, or generators that stand erect vertically akin to a buoy. Any western coastline in the world has wave energy potential.
  • River hydrokinetic technologies are also quite similar to tidal technologies, relying on the kinetic energy of moving water, which can be enhanced by tidal flows, particularly at the mouth of a river way interacting with a sea and/or ocean.
  • Ocean current technologies are similar to tidal energy technologies, only they can tap into deeper ocean currents that are located offshore. Less developed than either tidal or wave energy, ocean current technologies, nevertheless, are attracting more attention since the resource is 24/7.
  • Ocean thermal energy technologies take a very different approach to generating electricity, capturing energy from the differences in temperature between the ocean surface and lower depths, and can also deliver power 24/7.

While there is a common perception that the U.S. and much of the industrialized world has tapped out its hydropower resources, the Electric Power Research Institute (EPRI) disputes this claim. According to its assessment, the U.S. has the water resources to generate from 85,000 to 95,000 more megawatts (MW) from this non-carbon energy source, with 23,000 MW available by 2025. Included in this water power assessment are new emerging marine kinetic technologies. In fact, according to EPRI, ocean energy and hydrokinetic sources (which includes river hydrokinetic technologies) will nearly match conventional new hydropower at existing sites in new capacity additions in the U.S. between 2010 and 2025.

The UN projects that the total “technically exploitable” potential for waterpower (including marine renewables) is 15 trillion kilowatt-hours, equal to half of the projected global electricity use in the year 2030. Of this vast resource potential, roughly 15% has been developed so far. The UN and World Energy Council projects 250 GW of hydropower will be developed by 2030. If marine renewables capture just 10% of this forecasted hydropower capacity, that figure represents 25 GW, a figure Pike Research believes is a valid possibility and the likely floor on market scope.

The demand for energy worldwide will continue to grow at a dramatic clip between 2009 and 2025, with renewable energy sources overtaking natural gas as the second largest source behind coal by 2015 (IEA, 2008). By 2015, the marine renewable market share of this renewable energy growth will still be all but invisible as far as the IEA statistics are concerned, but development up to that point in time will determine whether these sources will contribute any substantial capacity by 2025. By 2015, Pike Research shows a potential of over 22 GW of all five technologies profiled in this report could come on-line. Two of the largest projects – a 14 GW tidal barrage in the U.K. and a 2.2 GW tidal fence in the Philippines — may never materialize, and/or will not likely be on-line by that date, leaving a net potential of more than 14 GW.

By 2025, at least 25 GW of total marine renewables will be developed globally. If effective carbon regulations in the U.S. are in place by 2010, and marine renewable targets established by various European governments are met, marine renewables and river hydrokinetic technologies could provide as much as 200 GW by 2025: 115 GW wave; 57 GW tidal stream; 20 GW tidal barrage; 4 GW ocean current; 3 GW river hydrokinetic; 1 GW OTEC.

About the author: Peter Asmus is an industry analyst with Pike Research and has been covering the energy sector for 20 years. His recent report on the ocean energy sector for Pike Research is now available, and more information can be found at http://www.pikeresearch.com. His new book, Introduction to Energy in California, is now available from the University of California Press (www.peterasmus.com).

Read Full Post »

JAMES RICKMAN, Seeking Alpha, June 8, 2009

wave-ocean-blue-sea-water-white-foam-photoOceans cover more than 70% of the Earth’s surface. As the world’s largest solar collectors, oceans generate thermal energy from the sun. They also produce mechanical energy from the tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives the tides, and the wind powers the ocean waves.

Wave energy is the capture of the power from waves on the surface of the ocean. It is one of the newer forms of renewable or ‘green’ energy under development, not as advanced as solar energy, fuel cells, wind energy, ethanol, geothermal companies, and flywheels. However, interest in wave energy is increasing and may be the wave of the future in coastal areas according to many sources including the International Energy Agency Implementing Agreement on Ocean Energy Systems (Report 2009).

Although fewer than 12 MW of ocean power capacity has been installed to date worldwide, we find a significant increase of investments reaching over $2 billion for R&D worldwide within the ocean power market including the development of commercial ocean wave power combination wind farms within the next three years.

Tidal turbines are a new technology that can be used in many tidal areas. They are basically wind turbines that can be located anywhere there is strong tidal flow. Because water is about 800 times denser than air, tidal turbines will have to be much sturdier than wind turbines. They will be heavier and more expensive to build but will be able to capture more energy. For example, in the U.S. Pacific Northwest region alone, it’s feasible that wave energy could produce 40–70 kilowatts (kW) per meter (3.3 feet) of western coastline. Renewable energy analysts believe there is enough energy in the ocean waves to provide up to 2 terawatts of electricity.

Companies to Watch in the Developing Wave Power Industry:

Siemens AG (SI) is a joint venture partner of Voith Siemens Hydro Power Generation, a leader in advanced hydro power technology and services, which owns Wavegen, Scotland’s first wave power company. Wavegen’s device is known as an oscillating water column, which is normally sited at the shoreline rather than in open water. A small facility is already connected to the Scottish power grid, and the company is working on another project in Northern Spain.

Ocean Power Technologies, Inc (OPTT) develops proprietary systems that generate electricity through ocean waves. Its PowerBuoy system is used to supply electricity to local and regional electric power grids. Iberdrola hired the company to build and operate a small wave power station off Santona, Spain, and is talking with French oil major Total (TOT) about another wave energy project off the French coast. It is also working on projects in England, Scotland, Hawaii, and Oregon.

Pelamis Wave Power, formerly known as Ocean Power Delivery, is a privately held company which has several owners including various venture capital funds, General Electric Energy (GE) and Norsk Hydro ADR (NHYDY.PK). Pelamis Wave Power is an excellent example of Scottish success in developing groundbreaking technology which may put Scotland at the forefront of Europe’s renewable revolution and create over 18,000 green high wage jobs in Scotland over the next decade. The Pelamis project is also being studied by Chevron (CVX).

Endesa SA ADS (ELEYY.PK) is a Spanish electric utility which is developing, in partnership with Pelamis, the world’s first full scale commercial wave power farm off Aguçadoura, Portugal which powers over 15,000 homes. A second phase of the project is now planned to increase the installed capacity from 2.25MW to 21MW using a further 25 Pelamis machines.

RWE AG ADR (RWEOY.PK) is a German management holding company with six divisions involved in power and energy. It is developing wave power stations in Siadar Bay on the Isle of Lewis off the coast of Scotland.

Australia’s Oceanlinx offers an oscillating wave column design and counts Germany’s largest power generator RWE as an investor. It has multiple projects in Australia and the U.S., as well as South Africa, Mexico, and Britain.

Alstom (AOMFF.PK) has also announced development in the promising but challenging field of capturing energy from waves and tides adding to the further interest from major renewable power developers in this emerging industry.

The U.S. Department of Energy has announced several wave energy developments including a cost-shared value of over $18 million, under the DOE’s competitive solicitation for Advanced Water Power Projects. The projects will advance commercial viability, cost-competitiveness, and market acceptance of new technologies that can harness renewable energy from oceans and rivers. The DOE has selected the following organizations and projects for grant awards:

First Topic Area: Technology Development (Up to $600,000 for up to two years)

Electric Power Research Institute, Inc (EPRI) (Palo Alto, Calif.) Fish-friendly hydropower turbine development & deployment. EPRI will address the additional developmental engineering required to prepare a more efficient and environmentally friendly hydropower turbine for the commercial market and allow it to compete with traditional designs.

Verdant Power Inc. (New York, N.Y.) Improved structure and fabrication of large, high-power kinetic hydropower systems rotors. Verdant will design, analyze, develop for manufacture, fabricate and thoroughly test an improved turbine blade design structure to allow for larger, higher-power and more cost-effective tidal power turbines.

Public Utility District #1 of Snohomish County (SnoPUD) (Everett, Wash.) Puget Sound Tidal Energy In-Water Testing and Development Project. SnoPUD will conduct in-water testing and demonstration of tidal flow technology as a first step toward potential construction of a commercial-scale power plant. The specific goal of this proposal is to complete engineering design and obtain construction approvals for a Puget Sound tidal pilot demonstration plant in the Admiralty Inlet region of the Sound.

Pacific Gas and Electric Company – San Francisco, Calif. WaveConnect Wave Energy In-Water Testing and Development Project. PG&E will complete engineering design, conduct baseline environmental studies, and submit all license construction and operation applications required for a wave energy demonstration plant for the Humboldt WaveConnect site in Northern California.

Concepts ETI, Inc (White River Junction, Vt.) Development and Demonstration of an Ocean Wave Converter (OWC) Power System. Concepts ETI will prepare detailed design, manufacturing and installation drawings of an OWC. They will then manufacture and install the system in Maui, Hawaii.

Lockheed Martin Corporation (LMT) – Manassas, Va., Advanced Composite Ocean Thermal Energy Conversion – “OTEC”, cold water pipe project. Lockheed Martin will validate manufacturing techniques for coldwater pipes critical to OTEC in order to help create a more cost-effective OTEC system.

Second Topic Area, Market Acceleration (Award size: up to $500,000)

Electric Power Research Institute (Palo Alto, Calif.) Wave Energy Resource Assessment and GIS Database for the U.S. EPRI will determine the naturally available resource base and the maximum practicable extractable wave energy resource in the U.S., as well as the annual electrical energy which could be produced by typical wave energy conversion devices from that resource.

Georgia Tech Research Corporation (Atlanta, Ga.) Assessment of Energy Production Potential from Tidal Streams in the U.S. Georgia Tech will utilize an advanced ocean circulation numerical model to predict tidal currents and compute both available and effective power densities for distribution to potential project developers and the general public.

Re Vision Consulting, LLC (Sacramento, Calif.) Best Siting Practices for Marine and Hydrokinetic Technologies With Respect to Environmental and Navigational Impacts. Re Vision will establish baseline, technology-based scenarios to identify potential concerns in the siting of marine and hydrokinetic energy devices, and to provide information and data to industry and regulators.

Pacific Energy Ventures, LLC (Portland, Ore.) Siting Protocol for Marine and Hydrokinetic Energy Projects. Pacific Energy Ventures will bring together a multi-disciplinary team in an iterative and collaborative process to develop, review, and recommend how emerging hydrokinetic technologies can be sited to minimize environmental impacts.

PCCI, Inc. (Alexandria, Va.) Marine and Hydrokinetic Renewable Energy Technologies: Identification of Potential Navigational Impacts and Mitigation Measures. PCCI will provide improved guidance to help developers understand how marine and hydrokinetic devices can be sited to minimize navigational impact and to expedite the U.S. Coast Guard review process.

Science Applications International Corporation (SAI) – San Diego, Calif., International Standards Development for Marine and Hydrokinetic Renewable Energy. SAIC will assist in the development of relevant marine and hydrokinetic energy industry standards, provide consistency and predictability to their development, and increase U.S. industry’s collaboration and representation in the development process.

Third Topic Area, National Marine Energy Centers (Award size: up to $1.25 million for up to five years)

Oregon State University, and University of Washington – Northwest National Marine Renewable Energy Center. OSU and UW will partner to develop the Northwest National Marine Renewable Energy Center with a full range of capabilities to support wave and tidal energy development for the U.S. Center activities are structured to: facilitate device commercialization, inform regulatory and policy decisions, and close key gaps in understanding.

University of Hawaii (Honolulu, Hawaii) National Renewable Marine Energy Center in Hawaii will facilitate the development and implementation of commercial wave energy systems and to assist the private sector in moving ocean thermal energy conversion systems beyond proof-of-concept to pre-commercialization, long-term testing.

Types of Hydro Turbines

There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water— the flow, or volume of water, at the site. Other deciding factors include how deep the turbine must be set, efficiency, and cost.

Impulse Turbines

The impulse turbine generally uses the velocity of the water to move the runner and discharges to atmospheric pressure. The water stream hits each bucket on the runner. There is no suction on the down side of the turbine, and the water flows out the bottom of the turbine housing after hitting the runner. An impulse turbine, for example Pelton or Cross-Flow is generally suitable for high head, low flow applications.

Reaction Turbines

A reaction turbine develops power from the combined action of pressure and moving water. The runner is placed directly in the water stream flowing over the blades rather than striking each individually. Reaction turbines include the Propeller, Bulb, Straflo, Tube, Kaplan, Francis or Kenetic are generally used for sites with lower head and higher flows than compared with the impulse turbines.

Types of Hydropower Plants

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not.

Many dams were built for other purposes and hydropower was added later. In the United States, there are about 80,000 dams of which only 2,400 produce power. The other dams are for recreation, stock/farm ponds, flood control, water supply, and irrigation. Hydropower plants range in size from small systems for a home or village to large projects producing electricity for utilities.


The most common type of hydroelectric power plant (above image) is an impoundment facility. An impoundment facility, typically a large hydropower system, uses a dam to store river water in a reservoir. Water released from the reservoir flows through a turbine, spinning it, which in turn activates a generator to produce electricity. The water may be released either to meet changing electricity needs or to maintain a constant reservoir level.

The Future of Ocean and Wave Energy

Wave energy devices extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in the ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

Wave energy rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, Japan, Australia, and the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it’s feasible that wave energy could produce 40–70 kilowatts (kW) per meter (3.3 feet) of western coastline. The West Coast of the United States is more than a 1,000 miles long.
In general, careful site selection is the key to keeping the environmental impacts of wave energy systems to a minimum. Wave energy system planners can choose sites that preserve scenic shorefronts. They also can avoid areas where wave energy systems can significantly alter flow patterns of sediment on the ocean floor.

Economically, wave energy systems are just beginning to compete with traditional power sources. However, the costs to produce wave energy are quickly coming down. Some European experts predict that wave power devices will soon find lucrative niche markets. Once built, they have low operation and maintenance costs because the fuel they use — seawater — is FREE.

The current cost of wave energy vs. traditional electric power sources?

It has been estimated that improving technology and economies of scale will allow wave generators to produce electricity at a cost comparable to wind-driven turbines, which produce energy at about 4.5 cents kWh.

For now, the best wave generator technology in place in the United Kingdom is producing energy at an average projected/assessed cost of 6.7 cents kWh.

In comparison, electricity generated by large scale coal burning power plants costs about 2.6 cents per kilowatt-hour. Combined-cycle natural gas turbine technology, the primary source of new electric power capacity is about 3 cents per kilowatt hour or higher. It is not unusual to average costs of 5 cents per kilowatt-hour and up for municipal utilities districts.

Currently, the United States, Brazil, Europe, Scotland, Germany, Portugal, Canada and France all lead the developing wave energy industry that will return 30% growth or more for the next five years.

Read Full Post »

MendoCoastCurrent, May 20, 2009

Mendocino-Energy-Mill-SiteAt this core energy technology incubator, energy policy is created as renewable energy technologies and science move swiftly from white boards and white papers to testing, refinement and implementation.

The Vision

Mendocino Energy is located on the Mendocino coast, three plus hours north of San Francisco/Silicon Valley. On the waterfront of Fort Bragg, utilizing a portion of the now-defunct Georgia-Pacific Mill Site to innovate in best practices, cost-efficient, safe renewable and sustainable energy development – wind, wave, solar, bioremediation, green-ag/algae, smart grid and grid technologies, et al.

The process is collaborative in creating, identifying and engineering optimum, commercial-scale, sustainable, renewable energy solutions…with acumen.

Start-ups, utilities companies, universities (e.g. Precourt Institute for Energy at Stanford), EPRI, the federal government (FERC, DOE, DOI) and the world’s greatest minds gathering at this fast-tracked, unique coming-together of a green work force and the U.S. government, creating responsible, safe renewable energy technologies to quickly identify best commercialization candidates and build-outs.

The campus is quickly constructed on healthy areas of the Mill Site as in the past, this waterfront, 400+ acre industry created contaminated areas where mushroom bioremediation is underway.

Determining best sitings for projects in solar thermal, wind turbines and mills, algae farming, bioremediation; taking the important first steps towards establishing U.S. leadership in renewable energy and the global green economy.

Read Full Post »

SustainableBusiness.com News, April 30, 2009

wave-ocean-blue-sea-water-white-foam-photoA bill introduced in the Senate aims to encourage development of renewable ocean energy.

Sen. Lisa Murkowski (R-Alaska) today introduced the legislation as a companion to a bill introduced in the U.S. House of Representatives by Rep. Jay Inslee, (D-Wash.), that would authorize as much as $250 million a year to promote ocean research.

The Marine Renewable Energy Promotion Act of 2009 and a companion tax provision would expand federal research of marine energy, take over the cost verification of new wave, current, tidal and thermal ocean energy devices, create an adaptive management fund to help pay for the demonstration and deployment of such electric projects and provide a key additional tax incentive.

“Coming from Alaska, where there are nearly 150 communities located along the state’s 34,000 miles of coastline plus dozens more on major river systems, it’s clear that perfecting marine energy could be of immense benefit to the nation,” said Murkowski, ranking member of the Senate Energy and Natural Resources Committee. “It simply makes sense to harness the power of the sun, wind, waves and river and ocean currents to make electricity.”

The legislation would:

  • Authorize the U.S. Department of Energy to increase its research and development effort. The bill also encourages efforts to allow marine energy to work in conjunction with other forms of energy, such as offshore wind, and authorizes more federal aid to assess and deal with any environmental impacts. 
  • Allow for the creation of a federal Marine-Based Energy Device Verification program in which the government would test and certify the performance of new marine technologies to reduce market risks for utilities purchasing power from such projects.
  • Authorize the federal government to set up an adaptive management program, and a fund to help pay for the regulatory permitting and development of new marine technologies.
  • And a separate bill, likely to be referred to the Senate Finance Committee for consideration, would ensure marine projects benefit from being able to accelerate the depreciation of their project costs over five years–like some other renewable energy technologies currently can do. The provision should enhance project economic returns for private developers

 The Electric Power Research Institute estimates that ocean resources in the United States could generate 252 million megawatt hours of electricity–6.5% of America’s entire electricity generation–if ocean energy gained the same financial and research incentives currently enjoyed by other forms of renewable energy.

“This bill, if approved, will bring us closer to a level playing field so that ocean energy can compete with wind, solar, geothermal and biomass technologies to generate clean energy,” Murkowski said.

Read Full Post »

Older Posts »