Feeds:
Posts
Comments

Posts Tagged ‘Ocean Energy’

The Engineer UK, July 6 2010

Aquamarine Power and AWS Ocean Energy today secured approximately £4.39m to continue development of their wave energy devices.

The WATERS fund (Wave and Tidal Energy: Research, Development and Demonstration Support) has provided Aquamarine Power with more than £3m to develop its 2.4MW Oyster demonstration project in Scotland while AWS Ocean Energy received £1.39m to develop its AWS-III surface-floating wave power device.

Phased installation of the Oyster 2 project will begin at the European Marine Energy Centre (EMEC) in Orkney in Summer 2011. In-depth coverage of Oyster from The Engineer’s 2009 Awards Supplement can be read here.

The Oyster demonstration project will consist of three 800kW hinged flaps, each measuring 26m by 16m. The flaps are moved by the motion of near shore waves, which in turn drive two hydraulic pistons that push high-pressure water onshore to drive a conventional hydro-electric turbine.

Oyster 2 Wave Energy Converter

Aquamarine Power claims each flap will deliver 250 per cent more power than the original Oyster prototype, which was successfully deployed at EMEC in 2009.

The three devices will be linked to a single onshore 2.4MW hydro-electric turbine. The new devices incorporate modifications that are expected to facilitate the production of more energy, be simpler to install and easier to maintain.

AWS Ocean Energy will use its funding to further develop the AWS-III device, a ring-shaped, multi-cell, surface-floating wave power system.

It is claimed that a single utility-scale AWS-III, measuring around 60m in diameter, will be capable of generating up to 2.5MW of continuous power.

Scale testing of the AWS-III on Loch Ness is currently being carried out to provide design data and confirm the AWS-III’s commercial potential.

The £15m WATERS scheme, which is run and administered by Scottish Enterprise, has been designed to support the construction and installation of pre-commercial full-scale wave and tidal stream device prototypes in Scottish waters.

Read Full Post »

JOHN UPTON, San Francisco Examiner, January 28, 2010

Tracking gray whales as they migrate past the San Francisco shoreline will help provide key information for a proposed plan to for a wave energy farm.

The mammals — which can grow up to 50 feet long, weigh up to 40 tons and are considered endangered on the West Coast — migrate between the Alaskan coast to the shores off Mexico, where they give birth to their young.

During their travels, the whales pass near Ocean Beach — but there is a lack of information about exactly where.

Moss Landing Marine Laboratories researchers will partner with San Francisco and track the mammals’ depth and distance from the shoreline using visual surveys and satellite tracking devices. A review of existing scientific literature will also be undertaken.

“There’s a fair amount of data on gray whales down around Monterey,” San Francisco Public Utilities Commission Project Manager Randall Smith said. “But there’s a data gap off the San Francisco coastline.”

The study will help city officials decide how and where to safely place an array of potentially-revolutionary underwater devices that might eventually deliver power as cheaply as solar panels.

The farm would capture and convert into electricity the power of arctic storm-generated waves as they pulse toward Ocean Beach.

A wide variety of devices are being developed worldwide that could help capture the wave power: Some bob near the surface, others float midwater like balloons, and a third type undulates like kelp along the seafloor.

Learning about gray whale migration patterns will help officials determine which devices would minimize the risk of whale collisions and decide where they should be located.

Research by UC Berkeley professor Ronald Yeung previously identified Ocean Beach as having strong potential for the nascent form of energy generation.

A wave study completed by San Francisco city contractors in December confirmed the site’s potential, according to Smith.

“Potentially, we could do a 30-megawatt wave farm out there,” Smith said.

The timelines and investment structure of the wave project are unclear, largely because the U.S. Minerals Management Service — which historically managed gas and oil deposits — was recently charged with regulating offshore renewable energy projects.

While the SFPUC waits for the service to finalize its permit application procedures, it’s forging ahead with an environmental review of the project required by California law, which includes the whale study.

Gray whales – the giant mammals are an endangered species.

Annual migration: 10,000 miles
Length: Up to 50 feet
Weight: Up to 80,000 pounds
Lifespan: In excess of 75 years
Maturity: Six to 12 years
Gestation: 12 to 13 months
Newborn calves: 14 to 16 feet long; 2,000 pounds

Source: National Oceanic and Atmospheric Administration

Read Full Post »

FRANK HARTZELL, Mendocino Beacon, December 17, 2009

The Obama administration has launched a new “zoning” approach that puts all ocean activities under the umbrella of nine regional planning bodies.

Public comments are being accepted through Friday, Feb. 12.

The approach is more local and integrated than the current strategy, which puts separate functions under different federal agencies. But it remains to be seen how such a plan can satisfy a plethora of federal laws that now protect the Atlantic and Pacific oceans, the Gulf of Mexico and the Great Lakes.

The issue of whales killed by ships (like the blue whale kill in October off Fort Bragg) is cited in the new report as an example of how the regional planning approach could solve problems that single agencies cannot.

In the Stellwagen Bank National Marine Sanctuary off Boston, the Coast Guard, National Oceanic and Atmospheric Administration, and several other government agencies and stakeholders reconfigured the Boston Traffic Separation Scheme, after numerous fatal collisions between marine mammals and ships.

This kind of joint action is what the new Obama approach anticipates using nationwide.

The reconfigured shipping lanes reduced risk of collision by an estimated 81% for all baleen whales and 58% for endangered right whales, studies show.

NOAA is the lone federal agency dealing with the whale kill issue locally, working with two state agencies, which have regulations that are inconsistent. With the Fort Bragg incident highlighting weaknesses in the regulatory process, a regional board could propose solutions.

In another example of oversight conflict, the Federal Energy Regulatory Commission (FERC) planned and launched a policy for wave energy leasing completely without local governments’ knowledge. Other federal agencies also bombarded FERC with criticism and problems their federal fellow had failed to anticipate when FERC’s program came to light.

The Obama administration’s idea is to bring all the federal and local agencies to the table at the planning stage, not the reactive stage.

“The uses of our oceans, coasts and Great Lakes have expanded exponentially over time,” said Nancy Sutley, chair of the White House Council on Environmental Quality, who also heads the Ocean Policy Task Force. “At the same time they are facing environmental challenges, including pollution and habitat destruction, that make them increasingly vulnerable.

“Without an improved, more thoughtful approach, we risk an increase in user conflicts and the potential loss of critical economic, ecosystem, social, and cultural benefits for present and future generations,” said Sutley, in a press release.

Many scientific studies have called for ocean zoning, but this is the first effort to make the idea work.

California, Oregon and Washington would be included in a single planning area The participants in the planning process, such as Indian tribes, federal agencies, states and local entities, would be asked to sign a contract modeled on development agreements.

Development agreements are widely used by housing developers to bring all county and state permitting agencies to the table so they can get loans and prepare to launch a project.

Sutley said the administration will reconvene the National Ocean Council to work with the regional planning bodies.

While the new approach promises more locally responsive planning, the job of the National Ocean Council will be to ensure that planning is consistent from region to region. That is likely to create some conflicts with monied interests representing some uses, such as oil drilling, and leave other uses with less ability to advocate at the table.

The proposal comes from the Interagency Ocean Policy Task Force, established by President Obama on June 12. It is led by Sutley and consists of 24 senior-level officials from administration agencies, departments and offices.

The task force’s interim framework is available for a 60-day public review and comment period. After the close of the comment period, the task force will finalize its recommendations in both this report and the Sept. 10 interim report and provide a final report to the President in early 2010.

For more details on the Interagency Ocean Policy Task Force, including the interim framework, and to submit comments, visit www.whitehouse.gov/oceans.

Read Full Post »

Scientific Computing, Advantage Business Media, November 2009

The ocean is a potentially vast source of electric power, yet as engineers test new technologies for capturing it, the devices are plagued by battering storms, limited efficiency and the need to be tethered to the seafloor. Now, a team of aerospace engineers is applying the principles that keep airplanes aloft to create a new wave energy system that is durable, extremely efficient and can be placed anywhere in the ocean, regardless of depth.

While still in early design stages, computer and scale model tests of the system suggest higher efficiencies than wind turbines. The system is designed to effectively cancel incoming waves, capturing their energy while flattening them out, providing an added application as a storm wave breaker.

The researchers, from the U.S. Air Force Academy, presented their design at the 62nd annual meeting of the American Physical Society’s Division of Fluid Dynamics on November 24, 2009.

“Our group was working on very basic research on feedback flow control for years,” says lead researcher Stefan Siegel, referring to efforts to use sensors and adjustable parts to control how fluids flow around airfoils like wings. “For an airplane, when you control that flow, you better control flight — for example, enabling you to land a plane on a shorter runway.”

A colleague had read an article on wave energy in a magazine and mentioned it to Siegel and the other team members, and they realized they could operate a wave energy device using the same feedback control concepts they had been developing.

Supported by a grant from the National Science Foundation, the researchers developed a system that uses lift instead of drag to cause the propeller blades to move.

“Every airplane flies with lift, not with drag,” says Siegel. “Compare an old style windmill with a modern one. The new style uses lift and is what made wind energy viable — and it doesn’t get shredded in a storm like an old windmill. Fluid dynamics fixed the issue for windmills, and can do the same for wave energy.”

Windmills have active controls that turn the blades to compensate for storm winds, eliminating lift when it is a risk, and preventing damage. The Air Force Academy researchers used the same approach with a hydrofoil (equivalent to an airfoil, but for water) and built it into a cycloidal propeller, a design that emerged in the 1930s and currently propels tugboats, ferries and other highly maneuverable ships.

The researchers changed the propeller orientation from horizontal to vertical, allowing direct interaction with the cyclic, up and down motion of wave energy. The researchers also developed individual control systems for each propeller blade, allowing sophisticated manipulations that maximize (or minimize, in the case of storms) interaction with wave energy.

Ultimately, the goal is to keep the flow direction and blade direction constant, cancelling the incoming wave and using standard gear-driven or direct-drive generators to convert the wave energy into electric energy. A propeller that is exactly out of phase with a wave will cancel that wave and maximize energy output. The cancellation also will allow the float-mounted devices to function without the need of mooring, important for deep sea locations that hold tremendous wave energy potential and are currently out of reach for many existing wave energy designs.

While the final device may be as large as 40 meters across, laboratory models are currently less than a meter in diameter. A larger version of the system will be tested next year at NSF’s Network for Earthquake Engineering Simulation (NEES) tsunami wave basin at Oregon State University, an important experiment for proving the efficacy of the design.

Compelling images of the cycloidal turbine:

The view from the far downstream end into the test section of the U.S. Air Force Academy water tunnel. Three blades of the cycloidal turbine are visible at the far end. Engineer Stefan Siegel and his colleagues test the turbine using the tunnel, with both steady and oscillating flow conditions simulating a shallow-water wave-flow field. Courtesy of SSgt Danny Washburn, U.S. Air Force Academy, Department of Aeronautics

 

A cycloidal turbine is installed on top of the test section of the U.S. Air Force Academy water tunnel. In the background, Manfred Meid (left) and Stefan Siegel (right) operate the turbine. Courtesy of SSgt Danny Washburn, US Air Force Academy, Department of Aeronautics

 

 

 

A cycloidal turbine prototype with three blades (translucent, at bottom of image), is shown lifted out of the tunnel. One of the blade pitch control servo amplifiers is visible in the foreground, and the servo motors can be seen in the top portion of the image. Courtesy of SSgt Danny Washburn, US Air Force Academy, Department of Aeronautics

Read Full Post »

MendoCoastCurrent, October 27, 2009

Editor’s Note: Over the past few weeks there have been numerous Blue Whales showing up dead on the coast of California and a cause of the recent Blue Whale washing up on the Mendocino coast has been the topic of great discussion and mystery here. Actual cause of death has been identified by propeller of a NOAA research ship. Additionally, here’s a new theory based on noise pollution and new research: Blue whales are forced to make more noise to compete with man-made noise pollution like ship sounds and sonar. More specifically: Blue whales increase their ‘singing’ to cope with noise pollution. And: Man-made noise such as ships’ engines has caused hearing loss in whales.

LOUISE GRAY, Telegraph UK, September 23, 2009

Whale-460_980418cIt has also caused other behavioural changes, including forcing the creatures to strand on beaches because they are unable to navigate.

The endangered blue whale uses sonar to navigate, locate prey, avoid predators and communicate.

However in recent years the increasing use of hi-tech sonar by ships, the noise of propellers, seismic surveys, sea-floor drilling, and low-frequency radio transmissions have made oceans noisier.

New research has shown that the whales are having to ‘chatter’ more often and for longer periods to communicate the location of prey and to mate.

Zoologist Lucia Di Iorio, of the University of Zurich, analysed the song of blue whales recorded by microphones during seismic explorations in the St Lawrence estuary off Canada’s north east coast over an eleven day period in August 2004.

“We found that blue whales called consistently more on seismic exploration days than on non-exploration days as well as during periods within a seismic survey day when the sparker was operating,” she said.

“This increase was observed for the discrete, audible calls that are emitted during social encounters and feeding.”

The study, published in Biology Letters, provides the first evidence that blue whales change their calling behaviour when exposed to sounds from seismic surveys.

“This study suggests careful reconsideration of the potential behavioural impacts of even low source level seismic survey sounds on large whales. This is particularly relevant when the species is at high risk of extinction as is the blue whale,” added Dr Di Iorio.

Read Full Post »

MendoCoastCurrent, September 21, 2009

wave-ocean-blue-sea-water-white-foam-photoThe U.S. Department of Energy recently announced that it is providing $14.6 million in funding for 22 water power projects to move forward in the commercial viability, market acceptance and environmental performance of new marine and hydrokinetic technologies as well as conventional hydropower plants.

The selected projects will further the nation’s supply of domestic clean hydroelectricity through technological innovation to capitalize on new sources of energy, and will advance markets and research to maximize the nation’s largest renewable energy source.

“Hydropower provides our nation with emissions-free, sustainable energy.  By improving hydropower technology, we can maximize what is already our biggest source of renewable energy in an environmentally responsible way.  These projects will provide critical support for the development of innovative renewable water power technologies and help ensure a vibrant hydropower industry for years to come,” said Secretary Chu.

Recipients include the Electric Power Research Institute (EPRI) in Palo Alto, California, receiving $1.5 million, $500,000 and $600,000 for three projects with the Hydro Research Foundation in Washington, DC, receiving to $1 million.

According to the Dept. of Energy, selected projects address five topic areas:

  • Hydropower Grid Services – Selection has been made for a project that develops new methods to quantify and maximize the benefits that conventional hydropower and pumped storage hydropower provide to transmission grids.
  • University Hydropower Research Program – Selected projects will be for organizations to establish and manage a competitive fellowship program to support graduate students and faculty members engaged in work directly relevant to conventional hydropower or pumped storage hydropower.
  • Marine & Hydrokinetic Energy Conversion Device or Component Design and Development – Selections are for industry-led partnerships to design, model, develop, refine, or test a marine and hydrokinetic energy conversion device, at full or subscale, or a component of such a device.
  • Marine and Hydrokinetic Site-specific Environmental Studies – Selected projects are for industry-led teams to perform environmental studies related to the installation, testing, or operation of a marine and hydrokinetic energy conversion device at an open water project site.
  • Advanced Ocean Energy Market Acceleration Analysis and Assessments – Selections are for a number of energy resource assessments across a number of marine and hydrokinetic resources, as well as life-cycle cost analyses for wave, current and ocean thermal energy conversion technologies.

For a complete list of the the funded projects, go here.

Read Full Post »

MARK CLAYTON, The Christian Science Monitor, September 17, 2009

wave-ocean-blue-sea-water-white-foam-photoWith demands on US ocean resources control growing quickly, the Obama administration today outlined a new comprehensive ocean management plan to guide federal agencies in restoring and protecting a badly stressed US coastal and ocean environment.

Today’s policy shift proposed by the president’s Interagency Ocean Policy Task Force holds enormous potential for sweeping changes in how the nation’s oceans are managed, including energy development, experts say.

At its core, the plan would set up a new National Ocean Council to guide a holistic “ecosystem-based” approach intended to elevate and unify what has long been a piecemeal approach by US agencies toward ocean policy and development — from oil and gas exploration to fisheries management to ship transportation to recreation.

The proposal would include “a more balanced, productive, and sustainable approach to using managing and conserving ocean resources,” Nancy Sutley, chairman of the president’s Council on Environmental Quality told reporters in a teleconference unveiling the plan. It would also set up “a comprehensive national approach to uphold our stewardship responsibilities and ensure accountability for our actions.”

Dr. Sutley, who also chaired the interagency task force, appeared alongside representatives from the Department of Interior, the Coast Guard, the Department of Transportation, and the National Oceanic and Atmospheric Administration. But the proposal would apply to 24 agencies.

“This will be the first time we have ever had this kind of action for healthy oceans from any president in US history,” Sarah Chasis, director of the ocean initiative at Natural Resources Defense Council wrote in her blog. She called it the “most progressive, comprehensive national action for our oceans that we have ever seen.”

The changes could affect new offshore wind energy proposals as well as oil and natural gas exploration. “We haven’t fully looked at all aspects of the report,” says Laurie Jodziewicz, manager of siting policy for the American Wind Energy Association. “The one concern we have is we don’t want to stop the momentum of offshore wind projects we’re already seeing. So while we’re certainly not opposed to marine spatial planning, we would like to see projects already in the pipeline move ahead and start getting some offshore projects going in the US.”

One senior official of the American Petroleum Institute said he had not yet seen the proposal and could not comment on it.

The new push comes at a time when major decisions will be needed about whether and how to explore or develop oil and gas in now-thawing areas of the Arctic Ocean near Alaska. Policy changes could also affect deep-water regions in the Gulf of Mexico as well as the siting of wave power and renewable offshore wind turbines off the East Coast.

At the same time, desalination plants, offshore aquaculture, and liquefied natural gas (LNG) terminals are clamoring for space along coastal areas where existing requirements by commercial shipping and commercial fishing are already in place.

All of that – set against a backdrop of existing and continuing damage to fisheries, coral, coastal wetlands, beaches, and deteriorating water quality – has America’s oceans “in crisis,” in the words of a landmark Pew Oceans Commission report issued in 2003. More than 20,000 acres of wetlands and other sensitive habitat disappear annually, while nutrient runoff creates “dead zones” and harmful algal blooms. Some 30% of US fish populations are overfished or fished unsustainably, the report found.

Among the Interagency Ocean Policy Task Force’s national objectives were:

  1. Ecosystem-based management as a foundational principle for comprehensive management of the ocean, coasts, and Great Lakes.
  2. Coastal and marine spatial planning to resolve emerging conflicts to ensure that shipping lanes and wind, wave, and oil and gas energy development do not harm fisheries and water quality.
  3. Improved coordination of policy development among federal state, tribal, local, and regional managers of ocean, coasts, and the Great Lakes.
  4. Focus on resiliency and adaptation to climate change and ocean acidification.
  5. Pay special attention to policies needed to deal with changing arctic conditions.

Experts said that the new, unified policy was timely, after decades of hit-or-miss development policies.

“We have been managing bits and pieces of the ocean for a long time, but while some good has been done on pollution and resource management, it hasn’t been sufficient.” says Andrew Rosenberg, professor of natural resources at the University of New Hampshire and an adviser to the president’s ocean task force.”This policy shift comes at a critical time for our oceans for so many reasons.”

The new proposal won’t be finalized until next year, after a 30-day comment period that begins now. Still, environmentalists were quick to hail the plan as a critical and timely step to begin healing disintegrating environmental conditions in US coastal waters and in the US exclusive economic zone that extends 200 miles beyond its territorial waters.

In June, President Obama set up the commission to develop: “a national policy that ensures the protection, maintenance, and restoration of the health of ocean, coastal, and Great Lakes ecosystems and resources, enhances the sustainability of ocean and coastal economies.”

It must also, he wrote, “preserve our maritime heritage, provides for adaptive management to enhance our understanding of and capacity to respond to climate change, and is coordinated with our national security and foreign policy interests.”

“It’s the first time the federal government has put out a decent paper that proposes what a national policy and attitude toward our oceans should be,” says Christopher Mann, senior officer Pew Environment Group, the environmental arm of the Pew Charitable Trust.

In one of the more telling passages buried down in its interim report, the task force called for decisions guided by “best available science” as well as a “precautionary approach” that reflects the Rio Declaration of 1992, which states: “where there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environment degradation.”

Read Full Post »

GRANT WELKER, Herald News, June 25, 2009

wave-ocean-blue-sea-water-white-foam-photoA renewable energy consortium based at the Advanced Technology and Manufacturing Center has received a $950,000 federal grant to study the potential for a tidal-energy project between Martha’s Vineyard and Nantucket, among other projects.

The New England Marine Renewable Energy Center, which includes professors and students from the University of Massachusetts Dartmouth, is developing a test site between the two islands that will determine the potential for a project that could power much of Martha’s Vineyard. Partners from other universities, including the University of Rhode Island, are researching other potential sites in New England for clean energy. The federal Department of Energy grant will mostly go toward the Nantucket Sound project but will also benefit other MREC efforts.

The ATMC founded the Marine Renewable Energy Center in spring 2008 through funding from the Massachusetts Technology Collaborative based on the ATMC’s proposal with officials from Martha’s Vineyard and Nantucket. The partnership was hailed by UMass Dartmouth officials as an extension of the university’s outreach to Cape Cod and the islands. Creation of the tidal-energy project itself is still years off, said Maggie L. Merrill, MREC’s consortium coordinator. But the site, Muskeget Channel, has “a lot of potential,” she said.

UMass Dartmouth School of Marine Science and Technology scientists are conducting the oceanographic surveys to locate what MREC calls “sweet spots,” where the currents run the fastest for the longest period of time. The test site will also be available to other clean energy developers to test their systems without needing to create costly test systems themselves, MREC said in announcing the grant.

Besides the federal grant, the MREC consortium is funded by UMass and the Massachusetts Technology Collaborative. “While New England suffers from energy shortages and high prices, there is tremendous energy available in the ocean at our doorstep,” MREC Director John Miller said in the announcement. “MREC is here to open that door bringing electricity and jobs to our region.” Miller was given a Pioneer Award last week in Maine at the Energy Ocean Conference for MREC’s work. The conference, which bills itself as the world’s leading renewable ocean energy event, recognized MREC for developing technology, coordinating funding, publicizing development efforts and planning an open-ocean test facility.

Read Full Post »

MendoCoastCurrent, June 19, 2009

wave-ocean-blue-sea-water-white-foam-photoThe United States Senate Energy and Natural Resources Committee today adopted legislation to include key provisions of the Marine Renewable Energy Promotion Act (Senate Act 923).

In response, the Ocean Renewable Energy Coalition (OREC) commended Committee Chairman Jeff Bingaman (D-NM) and Ranking Member Lisa Murkowski (R-AK) for including the marine energy provisions to the American Clean Energy Leadership Act of 2009 now being crafted. The legislation is regarded as integral for continued development of ocean, tidal and hydrokinetic energy sources.

“OREC strongly endorses the legislation adopted in the Senate Energy and Natural Resources Committee today,” said Sean O’Neill, OREC’s President. “Marine-based renewable resources offer vast energy, economic and environmental benefits. However, the success of this industry requires additional federal support for research, development and demonstration.”

The Marine Renewable Energy Promotion Act will authorize $250 million per year through 2021 for marine renewable research, development, demonstration and deployment (RDD&D), a Department of Energy sponsored Device Verification Program and an Adaptive Management Program to fund environmental studies associated with installed ocean renewable energy projects.

Read Full Post »

PETER ASMUS, Pike Research, June 17, 2009

wave-ocean-blue-sea-water-white-foam-photoThe earth is the water planet, so it should come as no great surprise that forms of water power have been one of the world’s most popular “renewable” energy sources. Yet the largest water power source of all – the ocean that covers three-quarters of earth – has yet to be tapped in any major way for power generation. There are three primary reasons for this:

  • The first is the nature of the ocean itself, a powerful resource that cannot be privately owned like land that typically serves as the foundation for site control for terrestrial power plants of all kinds;
  • The second is funding. Hydropower was heavily subsidized during the Great Depression, but little public investment has since been steered toward marine renewables with the exception of ocean thermal technologies, which were perceived to be a failure.
  • The third reason why the ocean has not yet been industrialized on behalf of energy production is that the technologies, materials and construction techniques did not exist until now to harness this renewable energy resource in any meaningful and cost effective way.

Literally hundreds of technology designs from more than 100 firms are competing for attention as they push a variety emerging ocean renewable options. Most are smaller upstart firms, but a few larger players – Scottish Power, Lockheed Martin and Pacific Gas & Electric — are engaged and seeking new business opportunities in the marine renewables space. Oil companies Chevron, BP and Shell are also investing in the sector.

In the U.S., the clear frontrunner among device developers is Ocean Power Technologies (OPT). It was the first wave power company to issue successful IPOs through the London Stock Exchange’s AIM market for approximately $40 million and then another on the U.S. Stock Exchange in 2007 for $100 million. OPT has a long list of projects in the pipeline, including the first “commercial” installation in the U.S. in Reedsport, Oregon in 2010, which could lead to the first 50 MW wave farm in the U.S. A nearby site in Coos Bay, Oregon represents another potential 100 MW deployment.

While the total installed capacity of emerging “second generation” marine hydrokinetic resources – a category that includes wave, tidal stream, ocean current, ocean thermal and river hydrokinetic resources – was less than 10 MW at the end of 2008, a recent surge in interest in these new renewable options has generated a buzz, particularly in the United Kingdom, Ireland, the United States, Portugal, South Korea, Australia, New Zealand and Japan, among other countries. It is expected that within the next five to eight years, these emerging technologies will become commercialized to the point that they can begin competing for a share of the burgeoning market for carbon-free and non-polluting renewable resources.

The five technologies covered in a new report by Pike Research are the following:

  • Tidal stream turbines often look suspiciously like wind turbines placed underwater. Tidal projects comprise over 90 percent of today’s marine kinetic capacity totals, but the vast majority of this installed capacity relies upon first generation “barrage” systems still relying upon storage dams.
  • Wave energy technologies more often look more like metal snakes that can span nearly 500 feet, floating on the ocean’s surface horizontally, or generators that stand erect vertically akin to a buoy. Any western coastline in the world has wave energy potential.
  • River hydrokinetic technologies are also quite similar to tidal technologies, relying on the kinetic energy of moving water, which can be enhanced by tidal flows, particularly at the mouth of a river way interacting with a sea and/or ocean.
  • Ocean current technologies are similar to tidal energy technologies, only they can tap into deeper ocean currents that are located offshore. Less developed than either tidal or wave energy, ocean current technologies, nevertheless, are attracting more attention since the resource is 24/7.
  • Ocean thermal energy technologies take a very different approach to generating electricity, capturing energy from the differences in temperature between the ocean surface and lower depths, and can also deliver power 24/7.

While there is a common perception that the U.S. and much of the industrialized world has tapped out its hydropower resources, the Electric Power Research Institute (EPRI) disputes this claim. According to its assessment, the U.S. has the water resources to generate from 85,000 to 95,000 more megawatts (MW) from this non-carbon energy source, with 23,000 MW available by 2025. Included in this water power assessment are new emerging marine kinetic technologies. In fact, according to EPRI, ocean energy and hydrokinetic sources (which includes river hydrokinetic technologies) will nearly match conventional new hydropower at existing sites in new capacity additions in the U.S. between 2010 and 2025.

The UN projects that the total “technically exploitable” potential for waterpower (including marine renewables) is 15 trillion kilowatt-hours, equal to half of the projected global electricity use in the year 2030. Of this vast resource potential, roughly 15% has been developed so far. The UN and World Energy Council projects 250 GW of hydropower will be developed by 2030. If marine renewables capture just 10% of this forecasted hydropower capacity, that figure represents 25 GW, a figure Pike Research believes is a valid possibility and the likely floor on market scope.

The demand for energy worldwide will continue to grow at a dramatic clip between 2009 and 2025, with renewable energy sources overtaking natural gas as the second largest source behind coal by 2015 (IEA, 2008). By 2015, the marine renewable market share of this renewable energy growth will still be all but invisible as far as the IEA statistics are concerned, but development up to that point in time will determine whether these sources will contribute any substantial capacity by 2025. By 2015, Pike Research shows a potential of over 22 GW of all five technologies profiled in this report could come on-line. Two of the largest projects – a 14 GW tidal barrage in the U.K. and a 2.2 GW tidal fence in the Philippines — may never materialize, and/or will not likely be on-line by that date, leaving a net potential of more than 14 GW.

By 2025, at least 25 GW of total marine renewables will be developed globally. If effective carbon regulations in the U.S. are in place by 2010, and marine renewable targets established by various European governments are met, marine renewables and river hydrokinetic technologies could provide as much as 200 GW by 2025: 115 GW wave; 57 GW tidal stream; 20 GW tidal barrage; 4 GW ocean current; 3 GW river hydrokinetic; 1 GW OTEC.

About the author: Peter Asmus is an industry analyst with Pike Research and has been covering the energy sector for 20 years. His recent report on the ocean energy sector for Pike Research is now available, and more information can be found at http://www.pikeresearch.com. His new book, Introduction to Energy in California, is now available from the University of California Press (www.peterasmus.com).

Read Full Post »

SustainableBusiness.com News, April 30, 2009

wave-ocean-blue-sea-water-white-foam-photoA bill introduced in the Senate aims to encourage development of renewable ocean energy.

Sen. Lisa Murkowski (R-Alaska) today introduced the legislation as a companion to a bill introduced in the U.S. House of Representatives by Rep. Jay Inslee, (D-Wash.), that would authorize as much as $250 million a year to promote ocean research.

The Marine Renewable Energy Promotion Act of 2009 and a companion tax provision would expand federal research of marine energy, take over the cost verification of new wave, current, tidal and thermal ocean energy devices, create an adaptive management fund to help pay for the demonstration and deployment of such electric projects and provide a key additional tax incentive.

“Coming from Alaska, where there are nearly 150 communities located along the state’s 34,000 miles of coastline plus dozens more on major river systems, it’s clear that perfecting marine energy could be of immense benefit to the nation,” said Murkowski, ranking member of the Senate Energy and Natural Resources Committee. “It simply makes sense to harness the power of the sun, wind, waves and river and ocean currents to make electricity.”

The legislation would:

  • Authorize the U.S. Department of Energy to increase its research and development effort. The bill also encourages efforts to allow marine energy to work in conjunction with other forms of energy, such as offshore wind, and authorizes more federal aid to assess and deal with any environmental impacts. 
  • Allow for the creation of a federal Marine-Based Energy Device Verification program in which the government would test and certify the performance of new marine technologies to reduce market risks for utilities purchasing power from such projects.
  • Authorize the federal government to set up an adaptive management program, and a fund to help pay for the regulatory permitting and development of new marine technologies.
  • And a separate bill, likely to be referred to the Senate Finance Committee for consideration, would ensure marine projects benefit from being able to accelerate the depreciation of their project costs over five years–like some other renewable energy technologies currently can do. The provision should enhance project economic returns for private developers

 The Electric Power Research Institute estimates that ocean resources in the United States could generate 252 million megawatt hours of electricity–6.5% of America’s entire electricity generation–if ocean energy gained the same financial and research incentives currently enjoyed by other forms of renewable energy.

“This bill, if approved, will bring us closer to a level playing field so that ocean energy can compete with wind, solar, geothermal and biomass technologies to generate clean energy,” Murkowski said.

Read Full Post »

H. JOSEF HEBERT, AP/StarTribune, April 22, 2009

dept_of_interior_seal

Washington D.C. — The Interior Department issued long-awaited regulations on April 22, 2009 governing offshore renewable energy projects that would tap wind, ocean currents and waves to produce electricity.

The framework establishes how leases will be issued and sets in place revenue sharing with nearby coastal states that will receive 27.5% of the royalties that will be generated from the electricity production.

Interior Secretary Ken Salazar said in an interview that applications are expected for dozens of proposed offshore wind projects, many off the north and central Atlantic in the coming months. “This will open the gates for them to move forward … It sets the rules of the road,” Salazer said.

Actual lease approvals will take longer.

Salazar said he expects the first electricity production from some of the offshore projects in two or three years, probably off the Atlantic Coast.

President Barack Obama, marking Earth Day during an appearances in Iowa, welcomed “the bold steps toward opening America’s oceans and new energy frontier.”

The offshore leasing rules for electricity production from wind, ocean currents and tidal waves had stalled for two years because of a jurisdictional dispute between the Interior Department and the Federal Energy Regulatory Commission over responsibility for ocean current projects.

That disagreement was resolved earlier this month in a memorandum of understanding signed by Salazar and FERC Chairman Jon Wellinghoff.

The department’s Minerals Management Service will control offshore wind and solar projects and issue leases and easements for wave and ocean current energy development. The energy regulatory agency will issue licenses for building and operating wave and ocean current projects.

Salazar repeatedly has championed the development of offshore wind turbine-generated energy, especially off the central Atlantic Coast where the potential for wind as an electricity source is believe to be huge.

He said he has had numerous requests from governors and senators from Atlantic Coastal states to move forward with offshore wind development. State are interested in not only the close availability of wind-generated electricity for the populous Northeast, but also the potential for additional state revenue.

“We expect there will be significant revenue that will be generated,” Salazar said.

Under the framework nearby coastal states would receive 27.5% and the federal government the rest.

Currently there is a proposal for a wind farm off Nantucket Sound, Mass., known as Cape Wind, which has been under review separately from the regulation announced Wednesday. The Interior Department said no decision has been made on the Cape Wind project, but if it is approved it will be subject to the terms of the new rules.

Read Full Post »

COLIN SULLIVAN, The New York Times, April 14, 2009

wave-ocean-blue-sea-water-white-foam-photoPalo Alto — Technology for tapping ocean waves, tides and rivers for electricity is far from commercial viability and lagging well behind wind, solar and other fledgling power sectors, a panel of experts said last week during a forum here on climate change and marine ecosystems.

While the potential for marine energy is great, ocean wave and tidal energy projects are still winding their way through an early research and development phase, these experts said.

“It’s basically not commercially financeable yet,” said Edwin Feo, a partner at Milbank, Tweed, Hadley & McCloy, during a conference at Stanford University. “They are still a long ways from getting access to the capital and being deployed, because they are simply immature technologies.”

Ocean and tidal energy are renewable sources that can be used to meet California’s renewable portfolio standard of 10 percent of electricity by 2010. But the industry has been hampered by uncertainty about environmental effects, poor economics, jurisdictional tieups and scattered progress for a handful of entrepreneurs.

Finavera Renewables, based in British Columbia, recently canceled all of its wave projects, bringing to a close what was the first permit for wave power from the Federal Energy Regulatory Commission. And last fall, the California Public Utilities Commission (CPUC) denied Pacific Gas & Electric Co.’s application for a power purchase agreement with Finavera Renewables, citing the technology’s immaturity.

Roger Bedard, head of the Electric Power Research Institute’s wave power research unit, said the United States is at least five and maybe 10 years away from the first commercial project in marine waters. A buoy at a Marine Corps base in Hawaii is the only wave-powered device that has been connected to the power grid so far in the United States. The first pilot tidal project, in New York’s East River, took five years to get a permit from FERC.

Feo, who handles renewable energy project financing at his law firm, says more than 80 ocean, tidal and river technologies are being tested by start-ups that do not have much access to capital or guarantee of long-term access to their resource. That has translated into little interest from the investment community.

“Most of these companies are start-ups,” Feo said. “From a project perspective, that doesn’t work. People who put money into projects expect long-term returns.”

William Douros of the National Oceanic and Atmospheric Administration (NOAA) expressed similar concerns and said agency officials have been trying to sort through early jurisdictional disputes and the development of some technologies that would “take up a lot of space on the sea floor.”

“You would think offshore wave energy projects are a given,” Douros said. “And yet, from our perspective, from within our agency, there are still a lot of questions.”

‘Really exciting times’

But the belief in marine energy is there in some quarters, prompting the Interior Department to clear up jurisdictional disputes with FERC for projects outside 3 miles from state waters. Under an agreement announced last week, Interior will issue leases for offshore wave and current energy development, while FREC will license the projects.

The agreement gives Interior’s Minerals Management Service exclusive jurisdiction over the production, transportation or transmission of energy from offshore wind and solar projects. MMS and FERC will share responsibilities for hydrokinetic projects, such as wave, tidal and ocean current.

Maurice Hill, who works on the leasing program at MMS, said the agency is developing “a comprehensive approach” to offshore energy development. Interior Secretary Ken Salazar himself has been holding regional meetings and will visit San Francisco this week to talk shop as part of that process.

Hill said MMS and the U.S. Geological Survey will issue a report within 45 days on potential development and then go public with its leasing program.

“These next couple of months are really exciting times, especially on the OCS,” he said.

Still, Hill acknowledged that the industry is in an early stage and said federal officials are approaching environmental effects especially with caution.

“We don’t know how they’ll work,” he said. “We’re testing at this stage.”

‘Highly energetic’ West Coast waves

But if projects do lurch forward, the Electric Power Research Institute’s Bedard said, the resource potential is off the charts. He believes it is possible to have 10 gigawatts of ocean wave energy online by 2025, and 3 gigawatts of river and ocean energy up in the same time frame.

The potential is greatest on the West Coast, Bedard said, where “highly energetic” waves pound the long coastline over thousands of miles. Alaska and California have the most to gain, he said, with Oregon, Washington and Hawaii not far behind.

To Feo, a key concern is the length of time MMS chooses to issue leases to developers. He said the typical MMS conditional lease time of two, three or five years won’t work for ocean wave technology because entrepreneurs need longer-term commitments to build projects and show investors the industry is here to say.

“It just won’t work” at two, three or five years, Feo said. “Sooner or later, you have to get beyond pilot projects.”

Hill refused to answer questions about the length of the leases being considered by MMS.

Read Full Post »

MendoCoastCurrent, March 25, 2009

aquamarine-power_fb8xa_69

Aquamarine Power has signed a $2.7 million contract with Fugro Seacore to install their wave energy generator, the Oyster, at the European Marine Energy Center.

Aquamarine’s Oyster converter is designed for waters that are from 26-52 feet deep with anticipated installation 550 yards offshore in the second half of 2009.  The Oyster has a wave action pump sending pressured water in a pipeline to an electricity generator.

The generator, to be built in Orkney, Scotland, is expected to produce between 300 and 600 kilowatts for Scotland’s national grid.

The contract is part of the Scottish government’s goal to derive 50% its electricity from renewable energy sources by 2020.

Read Full Post »

Editor’s Note:  On September 21, 2009 FERC Commissioner Suedeen Kelly declined a nomination to serve a second term on the panel. Kelly, a Democratic commissioner nominated by President Obama, said she was leaving her post for the private sector.  A FERC spokeswoman said Kelly would remain in her seat until Congress adjourns later this year.

In her tenure, Kelly has overseen the development of commercial scale renewable energy, the expansion of bid-based regional auction markets for electricity, growth in natural gas pipelines and storage and the birth of the smart grid.

“It is time for me to move on and pursue opportunities to advance these objectives in the private sector,” Kelly said in a statement.

The Senate has still yet to confirm another FERC nominee, John Norris. If the Senate fails to confirm Norris and replace Kelly before it adjourns, it will have only three commissioners sitting: two Republican and one Democrat.

MendoCoastCurrent, March 20, 2009

President Barack Obama has designated Jon Wellinghoff as chairman of the Federal Energy Regulatory Commission (FERC), a position he has held on an acting basis since January.

Wellinghoff is one of two Democrats on the five-member FERC commission.  Separately, the White House said Obama will nominate Commissioner Suedeen Kelly, the panel’s other Democrat, to a third term. Wellinghoff has been on the commission since 2006 and Kelly since 2003.

The Senate confirms commission members, but the president may name its chairman without Senate action.

Here’s the Obama Administration’s FERC Team:

comm_mem

Chairman Jon Wellinghoff, Commissioner Suedeen G. Kelly, Commissioner Philip D. Moeller, Commissioner Marc Spitzer

Read Full Post »

Cherry Creek News Staff, March 17, 2009

WASHINGTON, DC – In a joint statement issued today Secretary of the Interior (DOI), Ken Salazar and Acting Chairman of the Federal Energy Regulatory Commission (FERC) Jon Wellinghoff announced that the two agencies have confirmed their intent to work together to facilitate the permitting of renewable energy in offshore waters.

“Our renewable energy is too important for bureaucratic turf battles to slow down our progress. I am proud that we have reached an agreement with the Federal Energy Regulatory Commission regarding our respective roles in approving offshore renewable energy projects. This agreement will help sweep aside red tape so that our country can capture the great power of wave, tidal, wind and solar power off our coasts,” Secretary Salazar said.

“FERC is pleased to be working with the Department of the Interior and Secretary Salazar on a procedure that will help get renewable energy projects off the drawing board and onto the Outer Continental Shelf,” Acting FERC Chairman Jon Wellinghoff said.

Below is the joint Statement between DOI and FERC signed by Secretary Salazar and Acting Chairmain Wellinghoff:

JOINT STATEMENT BY THE SECRETARY OF THE INTERIOR AND THE ACTING CHAIRMAN OF THE FEDERAL ENERGY REGULATORY COMMISSION ON THE DEVELOPMENT OF RENEWABLE ENERGY RESOURCES ON THE OUTER CONTINENTAL SHELF

The United States has significant renewable energy resources in offshore waters, including wind energy, solar energy, and wave and ocean current energy.

Under the Outer Continental Shelf Lands Act, the Secretary of the Interior, acting through the Minerals Management Service, has the authority to grant leases, easements, and rights-of-way on the outer continental shelf for the development of oil and gas resources. The Energy Policy Act of 2005 amended the Outer Continental Shelf Lands Act to provide the Interior Department with parallel permitting authority with regard to the production, transportation, or transmission of energy from additional sources of energy on the outer continental shelf, including renewable energy sources.

The Interior Department’s responsibility for the permitting and development of renewable energy resources on the outer continental shelf is broad. In particular, the Department of the Interior has permitting and development authority over wind power projects that use offshore resources beyond state waters.

Interior’s authority does not diminish existing responsibilities that other agencies have with regard to the outer continental shelf. In that regard, under the Federal Power Act, the Federal Energy Regulatory Commission has the statutory responsibility to oversee the development of hydropower resources in navigable waters of the United States. “Hydrokinetic” power potentially can be developed offshore through new technologies that seek to convert wave, tidal and ocean current energy to electricity. FERC will have the primary responsibility to manage the licensing of such projects in offshore waters pursuant to the Federal Power Act, using procedures developed for hydropower licenses, and with the active involvement of relevant federal land and resource agencies, including the Department of the Interior.

We have requested our staffs to prepare a short Memorandum of Understanding that sets forth these principles, and which describes the process by which permits and licenses related to renewable energy resources in offshore waters will be developed.

Read Full Post »

MARSHA W. JOHNSTON, RenewableEnergyWorld.com, March 2009

One hundred and forty-one years ago, the relentless sea off Scotland’s coast inspired the following observation from native son and author George MacDonald:

I climbed the heights above the village, and looked abroad over the Atlantic. What a waste of aimless tossing to and fro! Gray mist above, full of falling rain; gray, wrathful waters underneath, foaming and bursting as billow broke upon billow…they burst on the rocks at the end of it, and rushed in shattered spouts and clouds of spray far into the air over their heads. “Will the time ever come,” I thought, when man shall be able to store up even this force for his own ends? Who can tell.”

In the United States, permitting may be an even bigger hurdle to marine energy deployment than financing. Between 25 and 35 different U.S. federal, state and local regulatory agencies claim some jurisdiction over marine power deployment. In the UK, two agencies handle permitting.

Today, we can certainly say, “Yes, the time will come.” The only question remaining is how long it will be before humankind routinely and widely uses electricity generated from the kinetic power of ocean tides, currents and waves.

If one defines “commercial ocean energy” as several tens of megawatts, the world cannot yet boast a commercial ocean energy installation. Indeed, only two installations of either wave, tidal or in-stream current devices are grid-connected and can generate over 1 megawatt (MW) of power. One is Pelamis Wave Power’s 2.25-MW Aguçadoura project off of Portugal’s northern coast and the other is Bristol-based Marine Current Turbines’ (MCT) SeaGen, a US $20-million commercial-scale tidal-energy project under development in Northern Ireland’s turbulent Strangford Narrows. In December, SeaGen boasted the first tidal turbine to hit a capacity of 1.2 MW.

(The biggest exception to commercial ocean energy production is the world’s longest running tidal power plant, the 240-MW La Rance, in France. But the plant’s barrage technology, which traps water behind a dam and releases it at low tide, has fallen out of favor due to its perceived higher environmental impact than underwater turbines. Nova Scotia has also been operating a 20-MW barrage Tidal Generating Station in the tidal-rich Bay of Fundy since 1984.)

The rest of the world’s wave, tidal and current installations, some of which have been in the water as far back as the 1990s, are experimental and prototype units ranging in size from 35 kilowatts (kW) to 400 kW. Because these units operate only intermittently and are not typically connected to any grid, it is not possible to determine their total power generation.

Many of these units are prototype demonstration units for the much bigger installations that are under development and that will begin to realize significant exploitation of the world’s ocean energy resource. For example, Ocean Power Technologies Inc. will use the 150-kW PowerBuoy it has been testing since the mid-90s as the “workhorse” for the 270-MW, four-site wave energy plant off California and Oregon coasts that it has partnered with Lockheed Martin to develop, says CEO George Taylor.

And Inverness, Scotland-based WaveGen expects to use 40 units of the 100-kw turbine it just installed off the Island of Islay for a 4-MW farm off of Scotland’s Isle of Lewis. Meanwhile, Pelamis says if its 750-kw “sea snake” devices, which were installed last year, make it through the winter, it will put 37 more of them in the water, generating 30 MW.

All of the wave, tidal, ocean and river current power around North America that can be practically extracted could together provide 10% of today’s electrical consumption in the U.S., says Roger Bedard, ocean energy leader at the Electric Power Research Institute (EPRI) in Palo Alto, CA. He adds that the total water resource could, it is sometimes said, possibly power the world twice over, but a lot of it is out of reach. “Hudson’s Bay, off the Arctic Circle, has HUGE tidal power, but it is thousands of miles from where anyone lives. We have HUGE wave resources off Aleutian Islands, but the same problem,” he says.  See EPRI’s U.S. Offshore Wave Energy Resource Map, below.

What will be the “magic” year for large-scale ocean energy deployment? Most developers indicate 2011-2012. Trey Taylor, co-founder and president of Verdant Power, which is moving into the commercial development phase of its 7-year-old Roosevelt Island Tidal Energy project, says the firm aims to have “at least 35 MW” in the water by the end of 2011.

Bedard is more circumspect. “I think it will be 2015 in Europe and 2025 in U.S. for big deployment,” he says, adding that the year cited depends entirely on the definition of “big” and “commercial,” which he defines as “many tens of megawatts.”

Verdant’s Taylor expects greater initial success in Canada. “The fundamental difference between Canada and the U.S. is that the underpinning of processes in Canada is collaborative and in the U.S. it is adversarial. It’s just the nature of Canadians, collaborating for community good, whereas in the U.S. people are afraid of being sued,” he said.

Bedard says the U.S. could catch up to Europe earlier, if the Obama Administration walks its big renewable energy infrastructure investment talk. “But if it’s business as usual, it could be later, depending on the economy,” he says.

Since the global economy began to melt down last September, many ocean energy companies have had to refocus their investment plans. With venture capital and institutional monies drying or dried up, firms are turning to public funds, strategic partners such as utilities and big engineering firms, and angel investors.

In November, MCT retained London-based Cavendish Corp Finance to seek new financing. Raymond Fagan, the Cavendish partner charged with MCT, said although tidal energy is not as advanced as wind or solar, he has seen a “strong level of interest so far from large engineering-type firms in MCT’s leading position.” Because MCT holds patents and is delivering power to the grid ahead of its competitors, Fagan thinks Cavendish can bring it together with such strategic partners.

In addition to the economic climate, he notes that the drop in oil and gas prices is further slowing renewable energy investment decisions. “Six to 12 months ago, people were leaping into renewable energy opportunities,” he says, adding that the UK government’s recent call for marine energy proposals for the enormous Pentland Firth zone north of Scotland will improve Cavendish’s chances of getting financing. Though it has yet to make a public announcement, MCT is widely viewed as a prime operator for the zone.

Monies are still available. Witness Pelamis Wave Power’s infusion of 5 million pounds sterling in November, which it says it will use for ongoing investment in core R&D and continuing development of its manufacturing processes and facilities.

In the U.S., permitting may be an even bigger hurdle to marine energy deployment than financing. Between 25 and 35 different U.S. federal, state and local regulatory agencies claim some jurisdiction over marine power deployment. In the UK, two agencies handle permitting. Bedard notes however, that streamlining the process in the U.S. may have begun with the recent opening of a new six-month process for licensing pilot marine energy plants.

Marine energy experts agree that there are more opportunities for wave power than for tidal, as there are simply fewer exploitable tidal sites. In technology terms, however, tidal turbines have benefited from a quarter century of wind turbine development, says Virginia Tech professor George Hagerman. Despite more widely available wave resource, wave energy developers face the challenge of needing many more devices than do tidal energy developers, and have a higher cabling cost to export the power.

As Christopher Barry, co-chair of the Ocean Renewable Energy panel at the Society of Naval Architects and Marine Engineers, explains: “The major challenge [to ocean energy] is not pure technology, but the side issues of power export and making the technology affordable and survivable.”

Read Full Post »

wave-ocean-blue-sea-water-white-foam-photoMendoCoastCurrent, February 14, 2009

Acting Federal Energy Regulatory Commission (FERC) Chairman Jon Wellinghoff recently published Facilitating Hydrokinetic Energy Development Through Regulatory Innovation

Consider it required reading as a backgrounder on US wave energy policy development, FERC’s position on the MMS in renewables and FERC’s perceived role as a government agency in renewable energy, specifically marine energy, development.

Missing from this key document are the environmental and socio-economic-geographic elements and the related approval process and regulations for:

  • environmental exposure, noting pre/during/post impact studies and mitigation elements at each and every marine energy location;
  • socio-economic factors at each and every marine location (including a community plan with local/state/federal levels of participation).

Approaching the marine renewable energy frontier with a gestalt view toward technology, policy and environmental concerns is a recommended path for safe exploration and development of new renewable energy solutions.  

It has been FERC’s position that energy regulatory measures and policies must precede before serious launch of US projects and other documents by Wellinghoff have noted a six month lead time for policy development alone.

MendoCoastCurrent sees all elements fast-tracked in tandem.  Environmental studies/impact statements are gathered as communities gear up to support the project(s) while technology and funding partners consider siting with best practices and cost-efficient deployment of safe marine energy generation.  All of these elements happen concurrently while FERC, DOI/MMS, DOE local and state governments explore, structure and build our required, new paradigm for safe and harmonious ocean energy policies.

Read Full Post »

JENNY HAWORTH, Scotman.com, February 12, 2009

na910MORE than three dozen energy companies from across the world are hoping to install wave energy devices in a stretch of sea off the north of Scotland. The renewable energy firms all have their sights on the Pentland Firth, which is considered one of the best locations in the world for generating electricity from the power of the tides.

Yesterday, the Crown Estate, which owns the seabed and will authorize any offshore  wave energy project, announced it had invited 38 companies to submit detailed plans for schemes in the Pentland Firth.

This is the first stretch of water off the UK to be opened up for development of marine renewables, meaning successful companies will be building among the first marine wave energy projects in the world.

Each company hopes to install dozens, or even hundreds of wave energy devices, such as tidal turbines, in the ocean.

Alex Salmond, the First Minister, hopes it will help Scotland become a world leader in renewable energy, saying “the fact that so many companies have already registered their interest in developing wave and tidal energy projects in the Pentland Firth and surrounding waters is extremely encouraging.”

“The Scottish Government has recently launched the world’s greatest-ever single prize for innovation in marine energy, the £10 million Saltire Prize, and the opening of the Pentland Firth for development is a timely and crucial move.”

The Crown Estate invited initial expressions of interest in the Pentland Firth from renewables firms in November 2008. A spokeswoman said she could not reveal how many companies had shown an interest because of competition rules, but she confirmed 38 firms would be invited to the next stage – to tender for sites in the Pentland Firth.

They must now submit detailed applications, spelling out how many devices they want to install in the water, by the end of May.

The Crown Estate will decide which are suitable, and the companies will then have to apply for planning permission from the Scottish Government.

Calum Duncan, Scottish conservation manager for the Marine Conservation Society, welcomed renewable technologies, but said the possible impact of the devices on sensitive seabed habitats must be considered, including the likely affect on mussel beds and feeding areas for fish, basking sharks and seabirds.

Liam McArthur, the Liberal Democrat energy spokesperson and MSP for Orkney, also welcomed the strong interest but had reservations. “This energetic stretch of water will be a challenging resource to tame,” he said.

“We still know relatively little about the Pentland Firth and what will happen when we start putting devices in the water there.

“While the Pentland Firth is often described as the Saudi Arabia of tidal power, the challenges it presents also make it the Mount Everest.”

Read Full Post »

Bloomberg via The Economic Times, February 2, 2009

corrannarrowsl_901581LONDON: Three decades ago, engineer Peter Fraenkel created an underwater turbine to use river power to pump water in Sudan, where he worked for a charity. Civil war and a lack of funding stymied his plans. Now, his modified design generates electricity from tides off Northern Ireland.

“In the 1970s, the big snag was the market for that technology consisted of people with no money,” said Fraenkel, the 67-year-old co-founder of closely-held Marine Current Turbines. “Now it’s clear governments are gagging for new renewable energy technology.”

MCT last year installed the world’s biggest grid-connected tidal power station in Strangford Lough, an Irish Sea inlet southeast of Belfast. The SeaGen project’s two turbines, which cost 2.5 million pounds ($3.6 million), can produce as much as 1.2 megawatts of electricity, enough to power 1,140 homes. The company is one of more than 30 trying to tap tidal currents around the world, six years after the first project sent power to the grid.

Investors may pump 2.5 billion pounds into similar plants in Europe by 2020 as the European Union offers incentives for projects that don’t release carbon dioxide, the gas primarily blamed for global warming. In the US, President Barack Obama plans to increase tax breaks for renewable energy.

“Tidal energy has an enormous future, and the UK has a great resource” if construction costs come down, said Hugo Chandler, renewable energy analyst at the Paris-based International Energy Agency, which advises 28 nations. “It’s time may be just around the corner.”

While tides are a free source of energy, generating power from them is three times more expensive than using natural gas or coal over the life of a project, according to the Carbon Trust, a UK government-funded research unit.

Including capital expenses, fuel and maintenance, UK tidal current power costs 15 pence per kilowatt hour, compared with 5 pence for coal and gas and 7 pence for wind, the trust says.

Designing equipment to survive in salty, corrosive water and installing it in fast-moving currents boosts startup costs, said MCT Managing Director Martin Wright, who founded the Bristol, England-based company with Fraenkel in 2002. MCT raised 30 million pounds for SeaGen and pilot projects, he said, declining to break out the expenses.

Gearboxes and generators have to be watertight. The machinery must withstand flows up to 9.3 knots (10.7 mph) in Strangford Lough, which exert three times the force of projects that harness wind at similar speeds, Fraenkel said.

“The forces you’re trying to tap into are your enemy when it comes to engineering the structure,” said Angela Robotham, MCT’s 54-year-old engineering chief.

The project consists of a 41-meter (135-foot) tower with a 29-meter crossbeam that is raised from the sea for maintenance. Attached to the beam are two rotors to capture incoming and outgoing flows. The turbines convert the energy from tidal flows into electricity, differing from more established “tidal range” technology that uses the rise and fall of water.

Positioned between the North Sea and Atlantic Ocean, the British Isles have about 15% of the world’s usable tidal current resources, which could generate 5% of domestic electricity demand, the Carbon Trust estimates. Including wave power, the ocean may eventually meet 20 percent of the UK’s energy needs, the government said in June.

OpenHydro, a closely held Dublin company, linked a donut-shaped device with less than a quarter of the capacity of SeaGen to the grid at the European Marine Energy Centre in Orkney, Scotland, last May.

Read Full Post »

RenewableEnergyWorld.com, January 27, 2009 

One Choice

One Option on the Shortlist

A shortlist of proposed plans to generate electricity from the power of the tides in the Severn estuary has been unveiled by the UK Department of Energy and Climate Change.

UK Energy and Climate Change Secretary Ed Miliband has also announced £500,000 [US $702,000] of new funding to further develop early-stage technologies like tidal reefs and fences. The progress of these technologies will be considered before decisions are taken whether to go ahead with a Severn tidal power scheme.

The tides in the Severn estuary are the second highest in the world. The largest proposal being taken forward has the potential to generate nearly 5% of the UK’s electricity from this domestic, low carbon and sustainable source.

Over the past year, the Government-led feasibility study has been investigating a list of ten options, gathering information on the costs, benefits and environmental challenges of using the estuary to generate power.

The proposed shortlist is includes:       

  • Cardiff Weston Barrage: A barrage crossing the Severn estuary from Brean Down, near Weston super Mare to Lavernock Point, near Cardiff. Its estimated capacity is over 8.6 gigawatts (GW).
  • Shoots Barrage: Further upstream of the Cardiff Weston scheme. Capacity of 1.05 GW, similar to a large fossil fuel plant.
  • Beachley Barrage: The smallest barrage on the proposed shortlist, just above the Wye River. It could generate 625 MW.
  • Bridgwater Bay Lagoon: Lagoons are radical new proposals which impound a section of the estuary without damming it. This plan is sited on the English shore between east of Hinkley Point and Weston super Mare. It could generate 1.36 GW.
  • Fleming Lagoon: An impoundment on the Welsh shore of the estuary between Newport and the Severn road crossings. It too could generate 1.36 GW.The proposed shortlist will now be subject to a three month public consultation which begins this week.

“Fighting climate change is the biggest long term challenge we face and we must look to use the UK’s own natural resources to generate clean, green electricity. The Severn estuary has massive potential to help achieve our climate change and renewable energy targets. We want to see how that potential compares against the other options for meeting our goals,” said UK Energy and Climate Change Secretary Ed Miliband.

Read Full Post »

MendoCoastCurrent, January 23, 2009

Marine Current Turbines Ltd, the Bristol based UK tidal energy company, in now in partnership Canada’s Minas Basin Pulp and Power Company Ltd to demonstrate and develop tidal power technology and facilities in Canada’s Bay of Fundy, Nova Scotia. Minas Basin Pulp and Power Company Limited (MBPP) of Hantsport, Nova Scotia is a leading sustainable energy and resources company.

Working in partnership with MBPP, Marine Current Turbines (MCT) will participate in the tidal power demonstration centre established by the Province of Nova Scotia. MBPP and MCT intend to deploy a 1.5MW tidal generator when the in-stream tidal energy centre enters full operation and is connected to the Nova Scotia grid. 

MCT installed the world’s first offshore tidal current device in 2003 off the south west coast of England (the 300kW SeaFlow) and during 2008, it installed and commissioned its 1.2MW SeaGen commercial prototype tidal current turbine in Strangford Narrows in Northern Ireland. SeaGen generated at its full output of 1.2MW onto the local grid in December 2008, becoming the most powerful marine energy device in the world. It has the capacity to generate power for approximately 1,000 homes. 

Notes on the SeaGen Technology from MCT: SeaGen works by generating power from sea currents, using a pair of axial flow turbines driving generators through gearboxes using similar principles to wind generator technology. The main difference is that the high density of seawater compared to wind allows a much smaller system; SeaGen has twin 600kW turbines each of 16m diameter. The capture of kinetic energy from a water current, much like with wind energy or solar energy, depends on how many square meters of flow cross-section can be addressed by the system. With water current turbines it is rotor swept area that dictates energy capture capability, because it is the cross section of flow that is intercepted which matters. SeaGen has over 400 square meters of rotor area which is why it can develop its full rated power of 1.2MW in a flow of 2.4m/s (5 knots).

Read Full Post »

DAVID EHRLICH, Earth2Tech/GigaOm, December 23, 2008

environmental_defenseOcean energy could have a big part to play under President-elect Barack Obama’s environmentally friendly administration, but a coalition that’s pushing for more wave and tidal power says change is needed to expand the number of projects in the U.S. Right now, there are only a handful of ocean energy projects in the U.S. and they’re all in the testing phase, according to the coalition.

The group, which is led by the New York-based Environmental Defense Fund, a non-profit environmental advocacy organization, said it has met with Obama’s transition team to discuss what it says is a confusing, and sometimes contradictory, array of federal regulations for ocean power. It claims that with federal help, ocean energy has the potential to generate 10% of the country’s demand for electricity, as well as create tens of thousands of jobs in the U.S.

Earlier this month, Obama named four key members to his cabinet that will be responsible for energy and climate change, including Steven Chu as energy secretary.

One big conflict the new cabinet may have to deal with is a jurisdictional dispute between the Federal Energy Regulatory Commission and the Minerals Management Service, part of the Dept. of the Interior. Both agencies have claims on the waters where ocean energy projects would be installed.

Part of the Energy Policy Act of 2005 gave the Minerals Management Service the power to issue leases for renewable energy projects in the outer continental shelf a zone of federally owned seabeds outside of state waters, which the coalition said typically covers an area from 3-200 nautical miles offshore.

But that new law didn’t eliminate any preexisting federal authority in the area, and the FERC has said it has the authority to license wave and tidal projects in U.S. territorial waters covering an area within 12 nautical miles of the shore.

According to the coalition, despite negotiations between the two agencies, they’ve been unable to reach an agreement on the overlapping claims. The group said that the continued uncertainty from that conflict is making it harder to lock down financing for ocean energy projects in the States.

The coalition is made up of local governments, utilities, environmental groups and ocean power companies, including Pennington, N.J.-based Ocean Power Technologies, which recently inked a deal to develop wave power projects off the coasts of Australia and New Zealand.

Read Full Post »

MendoCoastCurrent, November 29, 2008

Ann Arbor, Michigan — Slow-moving ocean and river currents could be a new, reliable and affordable alternative energy source. A University of Michigan engineer has made a machine that works like a fish to turn potentially destructive vibrations in fluid flows into clean, renewable power.

The machine is called VIVACE. A paper on it is published in the current issue of the quarterly Journal of Offshore Mechanics and Arctic Engineering.

VIVACE is a device that may harness energy from most of the water currents around the globe because it works in flows moving slower than 2 knots (about 2 miles per hour.) Most of the Earth’s currents are slower than 3 knots. Turbines and water mills need an average of 5 or 6 knots to operate efficiently.

VIVACE stands for Vortex Induced Vibrations for Aquatic Clean Energy. It doesn’t depend on waves, tides, turbines or dams. It’s a unique hydrokinetic energy system that relies on “vortex induced vibrations.”

Vortex induced vibrations are undulations that a rounded or cylinder-shaped object makes in a flow of fluid, which can be air or water. The presence of the object puts kinks in the current’s speed as it skims by. This causes eddies, or vortices, to form in a pattern on opposite sides of the object. The vortices push and pull the object up and down or left and right, perpendicular to the current.

These vibrations in wind toppled the Tacoma Narrows bridge in Washington in 1940 and the Ferrybridge power station cooling towers in England in 1965. In water, the vibrations regularly damage docks, oil rigs and coastal buildings.

“For the past 25 years, engineers—myself included—have been trying to suppress vortex induced vibrations. But now at Michigan we’re doing the opposite. We enhance the vibrations and harness this powerful and destructive force in nature,” said VIVACE developer Michael Bernitsas, a professor in the U-M Department of Naval Architecture and Marine Engineering.

Fish have long known how to put the vortices that cause these vibrations to good use.

“VIVACE copies aspects of fish technology,” Bernitsas said. “Fish curve their bodies to glide between the vortices shed by the bodies of the fish in front of them. Their muscle power alone could not propel them through the water at the speed they go, so they ride in each other’s wake.”

This generation of Bernitsas’ machine looks nothing like a fish, though he says future versions will have the equivalent of a tail and surface roughness a kin to scales. The working prototype in his lab is just one sleek cylinder attached to springs. The cylinder hangs horizontally across the flow of water in a tractor-trailer-sized tank in his marine renewable energy laboratory. The water in the tank flows at 1.5 knots.

Here’s how VIVACE works: The very presence of the cylinder in the current causes alternating vortices to form above and below the cylinder. The vortices push and pull the passive cylinder up and down on its springs, creating mechanical energy. Then, the machine converts the mechanical energy into electricity.

Just a few cylinders might be enough to power an anchored ship, or a lighthouse, Bernitsas says. These cylinders could be stacked in a short ladder. The professor estimates that array of VIVACE converters the size of a running track and about two stories high could power about 100,000 houses. Such an array could rest on a river bed or it could dangle, suspended in the water. But it would all be under the surface.

Because the oscillations of VIVACE would be slow, it is theorized that the system would not harm marine life like dams and water turbines can.

Bernitsas says VIVACE energy would cost about 5.5 cents per kilowatt hour. Wind energy costs 6.9 cents a kilowatt hour. Nuclear costs 4.6, and solar power costs between 16 and 48 cents per kilowatt hour depending on the location.

“There won’t be one solution for the world’s energy needs,” Bernitsas said. “But if we could harness 0.1% of the energy in the ocean, we could support the energy needs of 15 billion people.”

The researchers recently completed a feasibility study that found the device could draw power from the Detroit River. They are working to deploy one for a pilot project there within the 18 months.

This work has been supported by the U.S. Department of Energy, the Office of Naval Research, the National Science Foundation, the Detroit/Wayne County Port Autrhority, the DTE Energy Foundation, Michigan Universities Commercialization Initiative, and the Link Foundation. The technology is being commercialized through Bernitsas’ company, Vortex Hydro Energy.

Read Full Post »

CHRIS GOODALL, Guardian/U.K, November 27, 2008

Myth 1: Solar energy is too expensive to be of much use

In reality, today’s bulky and expensive solar panels capture only 10% or so of the sun’s energy, but rapid innovation in the US means that the next generation of panels will be much thinner, capture far more of the energy in the sun’s light and cost a fraction of what they do today. They may not even be made of silicon. First Solar, the largest manufacturer of thin panels, claims that its products will generate electricity in sunny countries as cheaply as large power stations by 2012.

Other companies are investigating even more efficient ways of capturing the sun’s energy, for example the use of long parabolic mirrors to focus light on to a thin tube carrying a liquid, which gets hot enough to drive a steam turbine and generate electricity. Spanish and German companies are installing large-scale solar power plants of this type in North Africa, Spain and the south-west of America; on hot summer afternoons in California, solar power stations are probably already financially competitive with coal. Europe, meanwhile, could get most of its electricity from plants in the Sahara desert. We would need new long-distance power transmission but the technology for providing this is advancing fast, and the countries of North Africa would get a valuable new source of income.

Myth 2: Wind energy is too unreliable

Actually, during some periods earlier this year the wind provided almost 40% of Spanish power. Parts of northern Germany generate more electricity from wind than they actually need. Northern Scotland, blessed with some of the best wind speeds in Europe, could easily generate 10% or even 15% of the UK’s electricity needs at a cost that would comfortably match today’s fossil fuel prices.

The intermittency of wind power does mean that we would need to run our electricity grids in a very different way. To provide the most reliable electricity, Europe needs to build better connections between regions and countries; those generating a surplus of wind energy should be able to export it easily to places where the air is still. The UK must invest in transmission cables, probably offshore, that bring Scottish wind-generated electricity to the power-hungry south-east and then continue on to Holland and France. The electricity distribution system must be Europe-wide if we are to get the maximum security of supply.

We will also need to invest in energy storage. At the moment we do this by pumping water uphill at times of surplus and letting it flow back down the mountain when power is scarce. Other countries are talking of developing “smart grids” that provide users with incentives to consume less electricity when wind speeds are low. Wind power is financially viable today in many countries, and it will become cheaper as turbines continue to grow in size, and manufacturers drive down costs. Some projections see more than 30% of the world’s electricity eventually coming from the wind. Turbine manufacture and installation are also set to become major sources of employment, with one trade body predicting that the sector will generate 2m jobs worldwide by 2020.

Myth 3: Marine energy is a dead-end

The thin channel of water between the north-east tip of Scotland and Orkney contains some of the most concentrated tidal power in the world. The energy from the peak flows may well be greater than the electricity needs of London. Similarly, the waves off the Atlantic coasts of Spain and Portugal are strong, consistent and able to provide a substantial fraction of the region’s power. Designing and building machines that can survive the harsh conditions of fast-flowing ocean waters has been challenging and the past decades have seen repeated disappointments here and abroad. This year we have seen the installation of the first tidal turbine to be successfully connected to the UK electricity grid in Strangford Lough, Northern Ireland, and the first group of large-scale wave power generators 5km off the coast of Portugal, constructed by a Scottish company.

But even though the UK shares with Canada, South Africa and parts of South America some of the best marine energy resources in the world, financial support has been trifling. The London opera houses have had more taxpayer money than the British marine power industry over the past few years. Danish support for wind power helped that country establish worldwide leadership in the building of turbines; the UK could do the same with wave and tidal power.

Myth 4: Nuclear power is cheaper than other low-carbon sources of electricity

If we believe that the world energy and environmental crises are as severe as is said, nuclear power stations must be considered as a possible option. But although the disposal of waste and the proliferation of nuclear weapons are profoundly important issues, the most severe problem may be the high and unpredictable cost of nuclear plants.

The new nuclear power station on the island of Olkiluoto in western Finland is a clear example. Electricity production was originally supposed to start this year, but the latest news is that the power station will not start generating until 2012. The impact on the cost of the project has been dramatic. When the contracts were signed, the plant was supposed to cost €3bn (£2.5bn). The final cost is likely to be more than twice this figure and the construction process is fast turning into a nightmare. A second new plant in Normandy appears to be experiencing similar problems. In the US, power companies are backing away from nuclear because of fears over uncontrollable costs.

Unless we can find a new way to build nuclear power stations, it looks as though CO2 capture at coal-fired plants will be a cheaper way of producing low-carbon electricity. A sustained research effort around the world might also mean that cost-effective carbon capture is available before the next generation of nuclear plants is ready, and that it will be possible to fit carbon-capture equipment on existing coal-fired power stations. Finding a way to roll out CO2 capture is the single most important research challenge the world faces today. The current leader, the Swedish power company Vattenfall, is using an innovative technology that burns the coal in pure oxygen rather than air, producing pure carbon dioxide from its chimneys, rather than expensively separating the CO2 from other exhaust gases. It hopes to be operating huge coal-fired power stations with minimal CO2 emissions by 2020.

Myth 5: Electric cars are slow and ugly

We tend to think that electric cars are all like the G Wiz vehicle, with a limited range, poor acceleration and an unprepossessing appearance. Actually, we are already very close to developing electric cars that match the performance of petrol vehicles. The Tesla electric sports car, sold in America but designed by Lotus in Norfolk, amazes all those who experience its awesome acceleration. With a price tag of more than $100,000, late 2008 probably wasn’t a good time to launch a luxury electric car, but the Tesla has demonstrated to everybody that electric cars can be exciting and desirable. The crucial advance in electric car technology has been in batteries: the latest lithium batteries – similar to the ones in your laptop – can provide large amounts of power for acceleration and a long enough range for almost all journeys.

Batteries still need to become cheaper and quicker to charge, but the UK’s largest manufacturer of electric vehicles says that advances are happening faster than ever before. Its urban delivery van has a range of over 100 miles, accelerates to 70mph and has running costs of just over 1p per mile. The cost of the diesel equivalent is probably 20 times as much. Denmark and Israel have committed to develop the full infrastructure for a switch to an all-electric car fleet. Danish cars will be powered by the spare electricity from the copious resources of wind power; the Israelis will provide solar power harvested from the desert.

Myth 6: Biofuels are always destructive to the environment

Making some of our motor fuel from food has been an almost unmitigated disaster. It has caused hunger and increased the rate of forest loss, as farmers have sought extra land on which to grow their crops. However the failure of the first generation of biofuels should not mean that we should reject the use of biological materials forever. Within a few years we will be able to turn agricultural wastes into liquid fuels by splitting cellulose, the most abundant molecule in plants and trees, into simple hydrocarbons. Chemists have struggled to find a way of breaking down this tough compound cheaply, but huge amounts of new capital have flowed into US companies that are working on making a petrol substitute from low-value agricultural wastes. In the lead is Range Fuels, a business funded by the venture capitalist Vinod Khosla, which is now building its first commercial cellulose cracking plant in Georgia using waste wood from managed forests as its feedstock.

We shouldn’t be under any illusion that making petrol from cellulose is a solution to all the problems of the first generation of biofuels. Although cellulose is abundant, our voracious needs for liquid fuel mean we will have to devote a significant fraction of the world’s land to growing the grasses and wood we need for cellulose refineries. Managing cellulose production so that it doesn’t reduce the amount of food produced is one of the most important issues we face.

Myth 7: Climate change means we need more organic agriculture

The uncomfortable reality is that we already struggle to feed six billion people. Population numbers will rise to more than nine billion by 2050. Although food production is increasing slowly, the growth rate in agricultural productivity is likely to decline below population increases within a few years. The richer half of the world’s population will also be eating more meat. Since animals need large amounts of land for every unit of meat they produce, this further threatens food production for the poor. So we need to ensure that as much food as possible is produced on the limited resources of good farmland. Most studies show that yields under organic cultivation are little more than half what can be achieved elsewhere. Unless this figure can be hugely improved, the implication is clear: the world cannot feed its people and produce huge amounts of cellulose for fuels if large acreages are converted to organic cultivation.

Myth 8: Zero carbon homes are the best way of dealing with greenhouse gas emissions from buildings

Buildings are responsible for about half the world’s emissions; domestic housing is the most important single source of greenhouse gases. The UK’s insistence that all new homes are “zero carbon” by 2016 sounds like a good idea, but there are two problems. In most countries, only about 1% of the housing stock is newly built each year. Tighter building regulations have no effect on the remaining 99%. Second, making a building genuinely zero carbon is extremely expensive. The few prototype UK homes that have recently reached this standard have cost twice as much as conventional houses.

Just focusing on new homes and demanding that housebuilders meet extremely high targets is not the right way to cut emissions. Instead, we should take a lesson from Germany. A mixture of subsidies, cheap loans and exhortation is succeeding in getting hundreds of thousands of older properties eco-renovated each year to very impressive standards and at reasonable cost. German renovators are learning lessons from the PassivHaus movement, which has focused not on reducing carbon emissions to zero, but on using painstaking methods to cut emissions to 10 or 20% of conventional levels, at a manageable cost, in both renovations and new homes. The PassivHaus pioneers have focused on improving insulation, providing far better air-tightness and warming incoming air in winter, with the hotter stale air extracted from the house. Careful attention to detail in both design and building work has produced unexpectedly large cuts in total energy use. The small extra price paid by householders is easily outweighed by the savings in electricity and gas. Rather than demanding totally carbon-neutral housing, the UK should push a massive programme of eco-renovation and cost-effective techniques for new construction.

Myth 9: The most efficient power stations are big

Large, modern gas-fired power stations can turn about 60% of the energy in fuel into electricity. The rest is lost as waste heat.

Even though 5-10% of the electricity will be lost in transmission to the user, efficiency has still been far better than small-scale local generation of power. This is changing fast.

New types of tiny combined heat and power plants are able to turn about half the energy in fuel into electricity, almost matching the efficiency of huge generators. These are now small enough to be easily installed in ordinary homes. Not only will they generate electricity but the surplus heat can be used to heat the house, meaning that all the energy in gas is productively used. Some types of air conditioning can even use the heat to power their chillers in summer.

We think that microgeneration means wind turbines or solar panels on the roof, but efficient combined heat and power plants are a far better prospect for the UK and elsewhere. Within a few years, we will see these small power plants, perhaps using cellulose-based renewable fuels and not just gas, in many buildings. Korea is leading the way by heavily subsidising the early installation of fuel cells at office buildings and other large electricity users.

Myth 10: All proposed solutions to climate change need to be hi-tech

The advanced economies are obsessed with finding hi-tech solutions to reducing greenhouse gas emissions. Many of these are expensive and may create as many problems as they solve. Nuclear power is a good example. But it may be cheaper and more effective to look for simple solutions that reduce emissions, or even extract existing carbon dioxide from the air. There are many viable proposals to do this cheaply around the world, which also often help feed the world’s poorest people. One outstanding example is to use a substance known as biochar to sequester carbon and increase food yields at the same time.

Biochar is an astonishing idea. Burning agricultural wastes in the absence of air leaves a charcoal composed of almost pure carbon, which can then be crushed and dug into the soil. Biochar is extremely stable and the carbon will stay in the soil unchanged for hundreds of years. The original agricultural wastes had captured CO2 from the air through the photosynthesis process; biochar is a low-tech way of sequestering carbon, effectively for ever. As importantly, biochar improves fertility in a wide variety of tropical soils. Beneficial micro-organisms seem to crowd into the pores of the small pieces of crushed charcoal. A network of practical engineers around the tropical world is developing the simple stoves needed to make the charcoal. A few million dollars of support would allow their research to benefit hundreds of millions of small farmers at the same time as extracting large quantities of CO2 from the atmosphere.

Read Full Post »

ISABEL ORDONEZ, Dow Jones News Service, October 6, 2008

Surfers aren’t the only ones itching to jump in the water and catch some big waves.

Dozens of companies, from oil giant Chevron Corp. to smaller firms like Ocean Power Technologies Inc., have invested in or are evaluating the potential of technology designed to harness electrical energy from waves, tides and currents.

Ocean Power, of Pennington, N.J., and Verdant Power Inc., of New York, are among the firms that already have built or plan to build wave and tidal power stations in oceans or adjacent waters. Others, such as Chevron, are seeking government approval to study the feasibility of such projects. All are in a race to harness what some scientists contend is among the nation’s largest unexploited sources of renewable energy.

“Chevron is monitoring ocean energy technology and considering how it might be integrated into our operations,” says Kim Copelin, a spokeswoman for the San Ramon, Calif., company, which is seeking a permit from the Federal Regulatory Energy Commission to start researching a possible tidal-power project in Alaska’s Cook Inlet.

These projects represent a rebirth of interest in the ocean and other waters as a source of energy, which intensified during the 1970s oil crises but fizzled in the 1980s when the price of oil dropped. Now, with concerns growing about global climate change, foreign oil dependency and rising commodity prices, companies and governments are taking another look.

Ocean-energy technology is in its infancy, and big hurdles to its widespread use remain. Among them: figuring out how to economically produce power on a large scale without harming marine life, and navigating a permitting process that companies say is lengthy and cumbersome but that some government agencies say is necessary to protect the environment.

Despite the hurdles, supporters believe there is an abundance of energy sitting off the U.S. coast just waiting to be tapped. While the amount of energy currently being produced by ocean-energy projects is minuscule, the Electric Power Research Institute — the research arm of U.S. utility companies — estimates that oceans eventually could supply about 10% of the electricity consumed in the U.S.

“Oceans are an enormous resource that should be seriously considered as part of the U.S. renewable energy portfolio,” says Sean O’Neill, president of the Ocean Renewable Energy Coalition, a national trade organization. Oceans “have waves, tides, currents, even offshore winds that don’t need to compete for precious land resources to generate plenty of electricity.”

Predictability of Tides

Companies are using a variety of devices to create electricity from moving water.

Ocean Power, for example, uses a network of buoys. The up-and-down movement of the ocean’s waves is converted into hydraulic pressure by pistons and cylinders located inside the buoys. That pressure spins a turbine, which turns a generator. The resulting electricity is sent ashore via an underwater cable. The company has a contract with the U.S. Navy to install and test its devices off the Marine Corps base at Kaneohe Bay, Hawaii. It also is working with a utility company in California and Oregon to build four wave-power stations, pending federal approvals.

verdantVerdant Power, meanwhile, produces power for a supermarket and parking lot using six underwater turbines in New York’s East River. The movement of water from the river’s tides turns blades on the turbines, creating a rotary motion that runs a generator. The company says it has a list of customers waiting for it to get the necessary approval to start generating electricity on a larger scale.

The prime territory in the U.S. to harvest energy from wave power is in the Pacific Ocean, off the coasts of Hawaii, Alaska, Oregon, Washington and northern and central California. The optimum spot for tapping into ocean currents, which are steady flows of water going in a prevailing direction, is off the shores of south Florida, while parts of the Alaska coastline, including the upper Cook Inlet around Anchorage, have some of the strongest tides in the world. The edges of Maine, New York, San Francisco and Washington state’s Puget Sound also look to be ideal for tidal energy, researchers say.

Tidal energy is drawing special interest because, though intermittent, it is more predictable than wind, solar or wave energy. While those energy sources rely on the weather, tides depend on the position of the sun, Earth and moon and gravitational forces that can be accurately predicted years in advance, says Roger Bedard, ocean energy leader at the nonprofit Electric Power Research Institute.

Regulatory Jockeying

New York, Maine, Alaska and other coastal states are investing in ocean energy projects, as is the U.S. Department of Energy, which spent $7.5 million in fiscal 2008 and could spend as much as $35 million in fiscal 2009 to help advance the viability and cost competitiveness of ocean water driven power systems.

“We need everything we can get to try to address energy supply issues,” says Steven Chalk, deputy assistant secretary for renewable energy at the Department of Energy. “If we have a true supply diversification, we will be less vulnerable to, say, rising oil prices.”

But proponents of ocean energy say private investment is being deterred by what they call an overly lengthy and complicated permitting process. Companies sometimes need more than 20 local, state and federal regulatory permits to start ocean energy research, says Mr. O’Neill of the Ocean Renewable Energy Coalition. As an example, Verdant Energy says it has spent more than $2 million on environmental research and waited more than five years to get to the final stages of obtaining the permits it needs to install more underwater turbines and produce electricity on a larger scale.

“In a perfect world, the U.S. will have a fast way to deal with new emerging technologies that allow companies to get into the water and start testing how efficient the equipment is and to measure the environmental impacts,” says Mr. O’Neill. “But that is just a dream.”

The projects facing the biggest logjams are those proposed for federal waters on the outer continental shelf, which generally begins three miles beyond the U.S. shoreline. Companies interested in generating energy from that part of the ocean need approval from both the Federal Energy Regulatory Commission — the U.S. agency that regulates interstate natural gas and electricity transactions — and the U.S. Minerals Management Service, a branch of the Interior Department that oversees offshore energy development.

An effort to end what many companies say is a jurisdictional overlap was unsuccessful, and last month, the Minerals Management Service unveiled a set of proposed permitting rules, including environmental regulations, that it expects to have in place by later this year.

Mark Robinson, director of the office of energy projects at FERC, says his agency believes the Minerals Management Service’s proposed process is too long and costly and “will work to the disadvantage of an industry” that is trying to get on its feet.

The Minerals Management Service says that it is still evaluating comments on its proposed rules but that it has two main responsibilities when it comes to offshore energy production: securing the nation’s energy resources and protecting the environment. “We take both very seriously,” says David Smith, the agency’s deputy chief of public affairs. “We work to try to find that balance.”

In the meantime, the Minerals Management Service is granting interim leases that allow companies to test the energy potential in various spots in the ocean. More than 10 companies have obtained interim leases to begin work along the coasts of Delaware, New Jersey, Georgia, Florida and California. Still, there are no guarantees that those businesses will be able to obtain approval to work the patches of ocean they are researching.

Moving Too Fast?

Ocean-energy projects are also making surfers and fishermen nervous. Those groups say they want to be consulted on any proposed projects because the impact on ocean recreation, ecology, public safety and fishing remains mostly unknown.

“What we want is that any company who wants to put a project in waters used by commercial fishermen contact the local fishermen group and work with them so they don’t harm the fishing industry,” says Linda Buell of the Fisherman’s Advisory Committee of Tillamook, a large coastal county in Oregon. “Nothing right now is written into the rules.”

Marine scientists, meanwhile, want more research done on the unintended consequences that large ocean-energy structures could have on marine organisms. These structures could possibly conflict with migratory pathways of great whales, says George Boehlert, director of the Hatfield Marine Science Center at Oregon State University. “But this is largely unknown,” he says.

Read Full Post »

GLOBE-NET NEWS, May 29, 2008

Forever moving – our restless oceans have enough energy to power the world. As long as the Earth turns and the moon keeps its appointed cycle, the oceans will absorb and dissipate vast amounts of kinetic energy – a renewable energy resource of enormous potential. But harnessing this resource has proven more difficult than first thought. In this the latest installment of the GLOBE-Net Series on Renewable Energy – we look at how the power of the oceans might eventually find its place among other forms of renewable energy.

Ocean Energy – What is it?

According to the United Nations, 44% of the world’s population lives within 150 km of an ocean coast. In Canada and Australia the number is much higher at 80%. In the United States 53% of the population lives in close proximity to an ocean.

Thus it is only natural that many countries look to the oceans as a source of energy to be harnessed. How they seek to exploit this resource varies according to factors of geography and available technologies.

The two main forms of energy associated with our oceans are tidal power and wave power – born of the same source, but different in how they turn energy into electricity.

Tidal Power

Tidal power coverts the energy of tides into electricity utilizing the rise and fall of the ocean tides. The stronger the tide, either in water level height or tidal current velocities, the greater the potential for tidal electricity generation.

Tidal generators act in much the same way as do wind turbines, however the higher density of water (832 times that of air) means that a single generator can provide significant power at velocities much lower than those associated`with the wind power generators.

Tidal power can be classified into two main types; Tidal Stream Systems and Barrages.

Barrages are similar to hydro-electric dams but are placed in an estuary bay or river mouth, where they act as barriers that create artificial tidal lagoons. When water levels outside the lagoon changes relative to water levels inside, turbines in the barrages are able to produce electrical power. There are only three such structures in the world: the Rance River in France, Canada’s Bay of Fundy, and Kislaya Guba, Russia.

Tidal stream systems make use of the kinetic energy of moving water to power turbines. This technology simply relies on individual turbines which are placed in the water column; moored to be suspended, floating or anchored to the ocean floor. As the tide flows in or out, electrical energy is produced as water moves through the turbine.

Tidal power boasts several advantages over other types of renewable energy technology, because tides are more predictable and reliable than wind energy or sunny days for solar power. Tidal energy has an efficiency ratio of approximately 80% in terms of converting the potential energy of the water into electricity. Tidal stream system turbines are only a third the diameter of wind rotors of the same power output.

As with wind power, location is important factor in terms of being able to harness the earth’s natural energy. Tidal stream systems must be located in areas with fast currents where natural flows are concentrated between natural obstructions, for example at the entrances to bays and rivers, around rocky points or headlands, or between islands and other land masses.

Wave Power

Ocean surface waves are also a considerable source of energy potential, but energy that is not as restricted in terms of location as tidal energy systems. Typically wave energy is captured using buoys which generate mechanical energy as they oscillate vertically from wave motion.

Terminator devices extend perpendicular to the direction of wave travel and capture or reflect the power of the wave. Water enters through a subsurface opening into a chamber with air trapped above it and wave action causes the captured water column to move up and down like a piston to force the air though an opening connected to a turbine.

A point absorber is a floating structure with components that move relative to each other due to wave action (e.g., a floating buoy inside a fixed cylinder). The relative motion is used to drive electromechanical or hydraulic energy converters.

Attenuators are long multi-segment floating structures oriented parallel to the direction of the waves. The differing heights of waves along the length of the device causes flexing where the segments connect, and this flexing is connected to hydraulic pumps or other converters.

Overtopping devices have reservoirs that are filled by incoming waves to levels above the average surrounding ocean. The water is then released, and gravity causes it to fall back toward the ocean surface. The energy of the falling water is used to turn hydro turbines.

Wave power varies considerably in different parts of the world, and wave energy can’t be harnessed effectively everywhere. According to the Ocean Renewable Energy Group, a Vancouver based organisation that promotes the development of ocean energy in Canada, regions considered to have “good” wave energy resources are generally those found within 40 to 60 degrees of latitude, where the strongest winds are found. Wave-power rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, Australia, and the northwestern coasts of the United States.

Projects Underway

Ocean energy company Clean Current Power Systems estimates a potential global market for 67,000 Megawatts (MW) of tidal and wave action equipment worth $200 billion. At 20 cents/kW hour, the market for tidal electricity could be $27 billion annually. According to Finavera, world-wide wave energy could provide up to 2,000 TWh/year, 10% of world electricity consumption.

It comes as no surprise then, that interest in ocean energy has been building momentum in the past few years as these nations scramble to meet renewable energy targets.

For instance, in November 2007, British company Lunar Energy announced that it would be building the world’s first deep-sea tidal-energy farm off the coast of Pembrokshire in Wales. Eight underwater turbines, each 25 metres long and 15 metres high will provide electricity for 5,000 homes. Construction is due to start in the summer of 2008 and the proposed tidal energy turbines, described as “a wind farm under the sea”, should be operational by 2010.

Plans for a ten-mile barrage across the River Severn, which could generate 5% of the UK’s electricity needs, are currently under development. According to the UK Sustainable Development Commission, a barrage across the Severn would produce clean and sustainable electricity for 120 years. This would have a capacity of 8,640MW and an estimated output of 17 terawatt hours a year.

Scotland boasts roughly 25% of the entire European Union’s tidal power potential and 10% of its wave energy potential and could produce more than 1,300 megawatts by 2020, enough to power a city the size of Seattle. In 2007, Scotland announced $26 million worth of funding packages to develop marine power in the nation. So far $8 million has been procured to develop 3 MW of tidal power.

UK based Marine Current Turbines is developing a tidal stream system off the coast of Ireland. The 1.2-megawatt turbine will be tested for 12 weeks before feeding power into the Northern Ireland grid where it will operate for up to 20 hours per day, producing enough electricity to power 1,000 homes.

Both Scotland and England are planning wave energy projects. Scotland will be developing a 3MW array and England will be developing a 20 MW Wave Hub off the north coast of Cornwall, England. The Cornwall project will power up to 7,500 homes.

Canada has the world’s longest coastline and has always been serious about harnessing ocean energy. In early 2008 the Government of Nova Scotia gave the green light to three tidal energy testing projects in the Bay of Fundy to help establish a permanent tidal energy farm (see GLOBE-Net Article Nova Scotia to fund tidal power research). Irving Oil is also studying 11 potential sites in the Bay of Fundy to develop tidal energy farms.

The Government of British Columbia estimates there are more than 6,000 megawatts of potential wave energy that have been identified so far in the province and projects are already underway to develop wave energy systems. In 2006 Vancouver based Clean Current Power Systems began developing a pilot tidal power project near Victoria to demonstrate the potential for tidal power.

PG&E and Vancouver-based Finavera Renewables is developing America’s first commercial wave power plant off the coast of Northern California. The plant is scheduled to begin operating in 2012, generating a maximum of 2 megawatts of electricity.

In March, 2008, the U.S. Department of Energy announced would be offering up to $7.5 million in grants for hydro-kinetic energy such as wave and tidal power. The department is seeking partnerships with companies and universities to develop the technologies and plans to award up to 17 grants.

Portugal is planning the world’s first commercial wave farm, the Aguçadora Wave Park near Póvoa de Varzim. If successful, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 72.5 MW.

The Challenges

Despite the enormous potential of ocean energy, there remain many pitfalls (if such a word can be used in a watery context) that have proven difficult to overcome, and which explains why ocean energy remains the least developed of all forms renewable energy. Problems still exist regarding cost, maintenance, environmental concerns and our still imperfect understanding of how power from the oceans will impact on the world’s energy infrastructure.

For example, turbines are susceptible to bio-fouling; the growth of aquatic life on or in the turbine. This can severely inhibit the efficiency of energy production and is both costly and difficult to remove. Turbines are also prone to damage from ocean debris.

In the Bay of Fundy, project developers are particularly concerned with ice floes the size of small apartments, and cobblestones the size of watermelons constantly being tossed across the Bay’s terrain by the power of the Bay’s water flows.

Turbines may also be hazardous to marine life and the impacts on marine life are still largely unknown, but concern is warranted.

Barrage systems are affected by problems of high initial infrastructure costs associated with construction and the resulting environmental problems. For example, independent research on the economics of building the proposed Severn Barrage in the UK revealed that, taking environmental costs into account, the structure could cost as much as $12 billion to create – $4 billion more than previously estimated.

Barrage impacts include a decrease in the average salinity and turbidity within a barrage, significantly altering associated ecosystems.

Wave power systems present their own set of challenges. Most electric generators operate at higher speeds, and most turbines require a constant, steady flow. Unfortunately wave energy is slow and ocean waves oscillate at varying frequencies.

The rough realities of the marine environment have also proven difficult to deal with, especially for companies seeking to remain cost-effective. Constructing wave devices that can survive storm damage and saltwater corrosion add to development costs.

The Future

Modern advances in ocean energy technology may eventually see large amounts of power generated from the ocean, especially tidal currents using the tidal stream designs. The technology is still in its infant stage and most projects that exist or are that are in project development stages are mainly pilot projects. But the promise remains.

“It’s not as well-established as solar, thermal, wind and biomass, but it [ocean power] shows a lot of promise,” said Philip Jennings, professor of energy studies at Western Australia’s Murdoch University.

“As the technology develops and becomes more affordable, which it will over time, we can continue to expand pretty much anywhere where there is an ocean,” said Chief Executive Officer Phil Metcalf of Pelamis Wave Power.

The market potential for tidal power still remains unclear [says who?]. Sector analysts believe Initial Public Offerings (IPO) for wave and tidal power projects will be much harder to price than for comparable wind power projects, because wave firms cannot give exact estimates on the scale of benefits and few have technologies that are up and running.

Regardless, both ocean wave and tidal power have attracted growing interest from investors and power utilities looking for the next long-term play in renewable energy.

“Water covers more than 70 percent of the Earth’s surface,” said Andy Karsner, assistant secretary for energy efficiency and renewable energy at the DOE. “Using environmentally responsible technologies, we have a tremendous opportunity to harness energy produced from ocean waves, tides or ocean currents, free-flowing water in rivers and other water resources to…provide clean and reliable power.”

According to Jennings ocean power could not match fossil fuels for electricity production but could be competitive with other forms of renewable energy.

Read Full Post »

IMC Brokers, October 23, 2007

Generating Renewable Energy from Ocean Waves

Wave power refers to the energy of ocean surface waves and the capture of that energy to do useful work – including electricity generation, desalination, and the pumping of water (into reservoirs). Wave power is a form of renewable energy. Though often co-mingled, wave power is distinct from the diurnal flux of tidal power and the steady gyre of ocean currents. Wave power generation is not a widely employed technology, and no commercial wave farm has yet been established (although development for the first commercial wind farm in the Orkneys are well under way).

Below you will find a selection of technologies used to convert wave energy into electricity.


Pelamis Wave Energy Converter: The Pelamis is a semi-submerged, articulated structure composed of cylindrical sections linked by hinged joints. The wave-induced motion of these joints is resisted by hydraulic rams, which pump high-pressure oil through hydraulic motors via smoothing accumulators. The hydraulic motors drive electrical generators to produce electricity. Power from all the joints is fed down a single umbilical cable to a junction on the sea bed. Several devices can be connected together and linked to shore through a single seabed cable.


Finavera’s AquabuOY: The AquaBuOY is a floating buoy structure that converts the kinetic energy of the vertical motion of oncoming waves into clean electricity. It utilizes a cylindrical buoy as the displacer and the reactor is a large water mass enclosed by a long vertical tube underneath the buoy.

[Youtube=http://www.youtube.com/watch?v=xu6_Em1LfBg”]
Aegir Dynamo: The Aegir Dynamo™ functions in a unique fashion by generating electrical current from the motion of the prime mover in one phase via a direct mechanical conversion and the use of a bespoke buoyancy vessel.

[YouTube=http://www.youtube.com/watch?v=r7-EPR8Ss6M”]Wave Dragon: Wave Dragon is a floating, slack-moored energy converter of the overtopping type that can be deployed in a single unit or in arrays of Wave Dragon units in groups resulting in a power plant with a capacity comparable to traditional fossil based power plants.

[YouTube=http://www.youtube.com/watch?v=cGD20eObcF8″]OWC Pico Power Plant: Wave enters in the “hydro-pneumatic chamber” (resembling a cave with entry below the waterline). Up-and down- movement of water column inside chamber makes air flow to and from the atmosphere, driving an air turbine. The turbine is symmetric and is driven indifferently in which direction the air flows.

AWS Wave Energy Converter
AWS Wave Energy Converter: The AWS (Archimedes Wave Swing) wave energy converter is a cylinder shaped buoy, moored to the seabed. Passing waves move an air-filled upper casing against a lower fixed cylinder, with up and down movement converted into electricity.
As a wave crest approaches, the water pressure on the top of the cylinder increases and the upper part or ‘floater’ compresses the gas within the cylinder to balance the pressures. The reverse happens as the wave trough passes and the cylinder expands. The relative movement between the floater and the lower part or silo is converted to electricity by means of a hydraulic system and motor-generator set.

Open-Centre Tidal Turbine
OpenHydro: The company’s vision is to deploy farms of open-centre tidal turbines under the world’s oceans – silently and invisibly generating electricity at no cost to the environment. OpenHydro’s technology enables the ocean’s immense energy to be harnessed for the benefit of all. The Open-Centre Turbine, with just one moving part and no seals, is a self-contained rotor with a solid state permanent magnet generator encapsulated within the outer rim, minimising maintenance requirements.

SPERBOY
SPERBOY: Developed and patented by Embley Energy, is a floating wave energy converter based on the ‘oscillating water column’ principle. Air displaced by the oscillating water column is passed through turbine-generators. Designed to be deployed in large arrays 8 to 12 miles off shore SPERBOYTM provides large-scale energy generation at a competitive cost.

Read Full Post »