Feeds:
Posts
Comments

Posts Tagged ‘Scotland’

MendoCoastCurrent, July 26, 2010

The Technology Strategy Board funding follows the support given earlier this month to AWS Ocean Energy by the Scottish Government’s WATERS programme (Wave and Tidal Energy: Research, Development and Demonstration Support).

Funding will further develop AWS Ocean Energy’s AWS-III, a ring-shaped multi-cell surface-floating wave power system.

The funding from the Technology Strategy Board is part of a £7m million funding package awarded to 9 wave and tidal stream research and development projects.

Simon Grey, Chief Executive of AWS Ocean Energy, says: “This latest funding is very welcome as we continue to develop our AWS-III wave energy device.

“Our trials on Loch Ness will restart in September for a 6 week period and thereafter a detailed assessment of the trial results will be undertaken before we start building and then deploy a full-scale version of one of the wave absorption cells.”

A single utility-scale AWS-III, measuring around 60 m in diameter, will be capable of generating up to 2.5 MW of continuous power.

AWS Ocean Energy says it is seeking industrial and utility partners to enable the launching of a 12-cell, 2.5 MW pre-commercial demonstrator in 2012 and subsequent commercialisation of the technology.

Read Full Post »

BBC News, June 11, 2010

A renewable energy company has gone “back to the future” to develop a device to harness power from waves.

AWS Ocean Energy chief executive Simon Grey said its prototype AWS-III on Loch Ness had evolved from “forgotten” technology first seen in 1985.

He said the device could eventually be used in the Northern Isles.

The technology was also tested on Loch Ness in the 1980s, but the Conservative government of the time suspended the wave energy programme.

Highlands Liberal Democrat MP and chief secretary to the Treasury, Danny Alexander, has visited the test site.

He said the progress being made by the company was impressive.

Mr Grey said Inverness-based AWS Ocean Energy was exploring the idea of a machine which had rubber rather than steel components.

Further research led to staff uncovering the similar concept from the 1980s.

He said: “We discovered that the work done in 1985 was rated as the most promising by the Department of Energy at the time.

“We have since taken that design and evolved it further so it is more cost effective in terms of producing power.”

EIGHTIES REVISITED

  • AWS Ocean Energy is updating technology first tested in 1985
  • The Conservatives were also in government at the time
  • Government was funding “green” energy projects then as it is today
  • The film Back to the Future was released in 1985

Mr Grey said the wave energy programme in the 1980s was fully funded by the UK government but the work was later suspended.

He said: “When interest in wave energy re-emerged people assumed that because it hadn’t happened in the past then those ideas wouldn’t work and they had to find new ideas.”

The chief executive said AWS-III was a re-working of a concept people had “forgotten about”.

The ring-shaped machine on Loch Ness is one tenth of the size of the device that could eventually be generating electricity on a commercial scale.

Full-scale machines could be deployed in the sea around Orkney and Shetland following further tests in 2012.

Investment of £2.3m was secured from the Scottish government to develop the AWS-III.

In 2008, AWS Ocean Energy said it had set its sights on winning the world’s largest prize for marine energy innovation.

It said it planned to double its workforce in 12 months, in part to improve its chances of securing the Scottish government’s Saltire Prize.

Following a visit to the test site on Loch Ness, Mr Alexander said: “Power from our seas can make a significant contribution to our energy security and the future of our environment.”

Read Full Post »

GAYATHRI VAIDYANATHAN, New York Times, March 2, 2010

Harnessing the ocean waves for emission-free power seems like a tidy concept, but the ocean is anything but tidy. Waves crash from multiple directions on a seemingly random basis, and converting the kinetic energy into electricity is a frontier of alternative energy research that requires grappling with large unknowns.

But with several utility companies and states, and in one case, the U.S. Navy, investing in wave power, or hydrokinetic energy, may not be too far off in the utility mix. At least two companies hope to reach commercial deployments within the next three to five years.

Off the coast of Orkney, Scotland, is the Oyster, a white- and yellow-flapped cylinder, 40 feet tall and firmly locked into the ocean’s bed. With a total of seven moving parts, two of which are pistons, it captures waves as they near the coast. Oyster funnels them into a pipe and carries the power inland to a hydroelectric power generator. The generator has been supplying the United Kingdom’s grid with 315 kilowatts of energy at peak power since October.

A farm of up to 100 Oysters could yield 100 megawatts, according to Aquamarine Power, the Scottish company that developed the technology.

“From an environmental perspective, in the sea you have a very simple machine that uses no oil, no chemicals, no electromagnetic radiation,” said Martin McAdam, CEO of Aquamarine.

The Oyster provides a tiny fraction of the 250 gigawatts of power that the water is capable of providing, including conventional hydroelectric energy by 2030, according to the United Nations. At least 25 gigawatts of that will come from marine renewables, according to Pike Research, a clean technology market research group. The non-conservative estimate is as much as 200 gigawatts. And 2015 will be the benchmark year to determine which of these estimates will be true.

The field of hydrokinetic power has a number of companies such as Aquamarine, all with unique designs and funded by utility companies, government grants and venture capitalists. If at least 50% of these projects come online by 2015, marine power could supply 2.7 gigawatts to the mix, according to Pike Research. A gigawatt is the electrical output of a large nuclear power plant.

‘PowerBuoy’ joins the Marines

There are six marine renewable technologies currently under development that aim to take advantage of ocean waves, tides, rivers, ocean currents, differences in ocean temperatures with depth, and osmosis.

“The energy landscape is going to be a mix of different energy sources, with an increasing proportion coming from renewables,” said Charles Dunleavy, CEO of Ocean Power Technologies, a New Jersey-based research group also developing wave energy. “We aim to be a very big part of this.”

The company has been testing its wave energy device, called the PowerBuoy, in the ocean since 2005. It recently launched another device a mile offshore from the island of Oahu in Hawaii and connected it to the power grid of the U.S. Marine Corps base. It now supplies 40 kilowatts of energy at peak, enough to power about 25 to 30 homes.

“The Navy wants to reduce its reliance on imported fossil fuel; they have a strong need to establish greater energy independence,” said Dunleavy.

The buoy captures the energy from right-sized waves (between 3 and 22 feet tall), which drive a hydraulic pump. The pump converts the motion into electricity in the ocean using a generator embedded into its base. A subsea cable transfers the power to the electrical grid. A buoy farm of 30 acres could yield 10 megawatts of energy, enough to supply 8,000 homes, said Dunleavy.

The structures rise 30 feet above water, and extend 115 feet down. They would not be a problem for commercial trawlers, which are farther offshore, or for ship navigation lanes, said Dunleavy. Recreational boaters, however, may have to watch out.

‘Oyster’ competes with the ‘top end of wind’

In comparison with a system such as the Oyster that brings water ashore to power turbines, creating electricity in the ocean is more efficient, said Dunleavy. “You lose a lot of energy to friction,” he said.

But Aquamarine’s system of having onshore power generation will cut down on maintenance costs, according to McAdam. Operation costs are expected to consume as much as 40% of the budget of operating a marine power plant, according to Pike Research.

Ocean Power is already selling its device for individual commercial use and building larger units of 150 kilowatts off the West Coast of the United States and for the utility company Iberdrola’s unit in Spain.

It is also developing the first wave power station under the Department of Energy’s stimulus program at Reedsport, Ore., according to Dunleavy. The farm, which currently has a 150-kilowatt unit, could grow by nine additional buoys.

And as for price, which is a major concern, Dunleavy said that cost compares with other renewables.

“It is cheaper than solar thermal and photovoltaics, and in the range of biomass,” he said. “It is at the top end of wind.”

The Oyster is also aiming to position itself as an alternative to wind power for utilities. McAdam said that by 2013, his company hopes to be a competitor to offshore wind installations. And by 2015, he hopes to compete with onshore wind.

Read Full Post »

TAYLOR JOHNSON, SmallWindTips, December 16, 2009

I have been somewhat intrigued by the topic of wind power charging the electric cars of the future as of late. After reading through a number of blogs and different Q&A areas on the internet, I decided to take the question of feasibility into my own hands, so that I can calculate the outcome and offer you the facts.

The first production scale electric vehicle will be the Nissan Leaf, which will hold a charge of up to 24 kilowatt hours. According to Nissan, this 24 kilowatt hour battery can be changed fully in approximately 4-8 hours, and during a quick charge can be 80% charged in only 26 minutes. Wouldn’t that be great, or I guess I should say “won’t that be great” because it is already set for production. It seems that if I were to install a 1.5 kilowatt turbine on my house it should theoretically charge my car over night so it will be ready for me when I head off to work the next day. That’s what I thought too, but the calculations just don’t support it.

Let me first start out by explaining a kilowatt hour and how it differs from the 1.5 kilowatt output of our turbine. So, we have this 1.5 kilowatt turbine on our house, how much power is that really producing? Well, when wind speeds are ideal (usually around 12 mph) your wind turbine will be producing 1.5 kilowatt hours each and every hour, or at least until the wind dies down. As the wind dies down, the power output exponentially decreases until the wind reaches a low speed (generally around 4-6 mph). At this low wind speed no power production will occur, the wind just does not have enough energy to spin the blades on the home wind turbine. Since, the wind doesn’t always blow at 12 mph or higher, scientists have calculated averages for actual wind power production from a turbine. Now I won’t get into all the details, but 40% peak production is very good and we will use that for the calculations to follow.

So now that we know that we have a 1.5 kilowatt small wind turbine and we know that 40% annual power production is near the best we could ever hope for, we can calculate a best case scenario for power output. Simply multiply your turbine’s rated output by the number of hours in a year as well as the 40% annual production statistic.

1.5 x 8,760 x 0.40 = 5,256 kWh’s

This gives us a theoretical annual output of 5,256 kilowatt hours. Now from here, we go back to the car. The Nissan Leaf can store up to 24 kilowatt hours of energy and can travel approximately 100 miles per charge. Since we know that the average American travels 12,000 miles per year, we can accurately deduce that in order to drive the Nissan Leaf as we would like to, we will need to charge it a minimum of 120 times. So, since we are considering best case scenarios, let assume that every time your car is plugged in you will be producing energy at the constant 40%. If that were the case, the Nissan leaf would require 2,880 kilowatt hours (or 120 x 24 kilowatt hours) of energy per year, and that is very do-able.

Now this is where I see a lot of analysis stop. People simply assume that that should work and life should be peachy, however that isn’t the case. As mentioned above and further explained in Understanding the Basics of Windpower, a wind turbine can only produce it’s capacity (in this case 1.5 kilowatts) once each hour. So in the 4-8 hours of charging time for your Nissan Leaf, your 1.5 kilowatt turbine will only produce a maximum of 6-12 kilowatt hours, while the car requires 24 kilowatt hours. And just to emphasize the 6-12 kilowatt hours is a maximum, when output is full and the winds are howling.

I just want to close by saying that in no way am I saying small wind and residential wind systems are not the future of America’s energy policy, nor am I saying that they will not have a large part in powering the cars of tomorrow. I simply wanted to dispell any misconceptions concerning the feasibility of residential wind equipment charging the electric cars of tomorrow.

Read Full Post »

MendoCoastCurrent, October 30, 2009

oyster_prototype_device_aquamarine_powerJust last week in Scotland the Oyster from Aquamarine Power passed a crucial test and is no longer in locked-down position on the seabed. Now the Oyster moves back and forth in the ocean waves, pumping high-pressure water to its onshore hydro-electric turbine as it readies for full-commissioning.

The Oyster captures energy found in near-shore waves up to depths of 10 to 12 metres and consists of a hinged flap connected to the seabed at around 10m depth. Each passing wave moves the flap which drives a hydraulic piston to deliver high-pressure water to an onshore turbine which generates electricity. The Oyster now goes through commissioning in advance of grid connection as the official switch on by Scotland’s First Minister Alex Salmond is set for on November 20, 2009.

Martin McAdam, Aquamarine Power chief executive said: “We are delighted to have passed this crucial stage in commissioning the world’s very first Oyster wave energy convertor. This major milestone shows that the Oyster does what we have always believed it will do, and we look forward to completing commissioning and producing clean, green energy from Scotland’s waves in the coming months.”

Read Full Post »

NAO NAKANISHI, Reuters, October 5, 2009

PelamisWaveFarm_PelamisWavePowerA first attempt fell victim to the crisis: now in the docks of Scotland’s ancient capital, a second-generation scarlet Sea Snake is being prepared to harness the waves of Britain’s northern islands to generate electricity.

Dwarfed by 180 metres of tubing, scores of engineers clamber over the device, which is designed to dip and ride the swelling sea with each move being converted into power to be channelled through subsea cables.

Due to be installed next spring at the European Marine Energy Centre (EMEC) in Orkney, northern Scotland, the wave power generator was ordered by German power company E.ON, reflecting serious interest in an emerging technology which is much more expensive than offshore wind.

Interest from the utility companies is driven by regulatory requirements to cut carbon emissions from electricity generation, and it helps in a capital-intensive sector.

Venture capitalists interested in clean tech projects typically have shorter horizons for required returns than the 10-20 years such projects can take, so the utilities’ deeper pockets and solid capital base are useful.

“Our view … is this is a 2020 market place,” said Amaan Lafayette, E.ON’s marine development manager. “We would like to see a small-scale plant of our own in water in 2015-2017, built on what we are doing here. It’s a kind of generation we haven’t done before.”

The World Energy Council has estimated the market potential for wave energy at more than 2,000 terawatt hours a year — or about 10% of world electricity consumption — representing capital expenditure of more than 500 billion pounds ($790 billion).

Island nation Britain has a leading role in developing the technology for marine power, which government advisor the Carbon Trust says could in future account for 20% of the country’s electricity. The government is stepping up support as part of a 405 million pound investment in renewable energy to help its ambition of cutting carbon emissions by 80% by 2050 from 1990 levels, while securing energy supply. (The challenge is more about getting to a place where we are comparable with other renewable technologies… We want to get somewhere around offshore wind,” said Lafayette.)

Britain’s Crown Estate, which owns the seabed within 12 nautical miles of the coast, is also holding a competition for a commercial marine energy project in Pentland Firth in northern Scotland.

Besides wave power, Britain is testing systems to extract the energy from tides: private company Marine Current Turbines Ltd (MCT) last year opened the world’s first large-scale tidal turbine SeaGen in Northern Ireland.

DEVELOPING LIKE WIND

wave_power_pelamis“We are often compared to the wind industry 20 years ago,” said Andrew Scott, project development manager at Pelamis Wave Power Ltd, which is developing the Sea Snake system, known as P2. Standing beside the train-sized serpent, Pelamis’ Scott said wave power projects are taking a variety of forms, which he said was similar to the development of the wind turbine. “You had vertical axis, horizontal axis and every kind of shapes before the industry consolidated on what you know as acceptable average modern day turbines.”

The Edinburgh Snake follows a pioneering commercial wave power project the company set up in Portugal last September, out of action since the collapse of Australian-based infrastructure group Babcock & Brown which held a majority share. “It’s easy to develop your prototypes and models in the lab, but as soon as you put them in water, it swallows capital,” said John Liljelund, CEO of Finnish wave energy firm AW-Energy, which just received $4.4 million from the European Union to develop its WaveRoller concept in Portugal.

At present, industry executives say marine power costs about double that from offshore wind farms, which require investment of around 2-3 million euros per megawatt. Solar panels cost about 3-4 million per megawatt, and solar thermal mirror power about 5 million.

UTILITY ACTION

Other utility companies involved in wave power trials include Spain’s Iberdrola, which has a small experimental wave farm using floating buoys called “Power Take- offs” off the coast of northern Spain. It is examining sites for a subsea tidal turbine project made by Norwegian company Hammerfest Strom.

Countries developing the technology besides Britain include Portugal, Ireland, Spain, South Korea and the United States: about 100 companies are vying for a share of the market, but only a handful have tested their work in the ocean.

Privately owned Pelamis has focussed on wave energy since 1998, has its own full-scale factory in Leith dock and sees more orders for the second generation in prospect.

Lafayette said E.ON examined more than 100 devices since 2001 before picking Sea Snake for its first ocean project, a three-year test: “They have a demonstrable track record … and commercial focus and business focus.”

A single Sea Snake has capacity of 750 kilowatts: by around 2015, Pelamis hopes each unit will have capacity of 20 megawatts, or enough to power about 30,000 homes.

Neither Pelamis nor E.ON would elaborate on the cost of the Sea Snake, but they said the goal is to bring it down to the level of offshore wind farms.

Read Full Post »

Hydro Review, August 18, 2009

aquamarine-power_fb8xa_69Off the north coast of Scotland in waters 10 to 12 meters deep, ocean energy developer Aquamarine Power Ltd. has bolted its Oyster wave energy converter to the ocean floor and expects to be generating power by year’s end.

A team of offshore professionals eased the 194-ton converter into the sea at the European Marine Energy Center in the Orkney Islands. “Getting Oyster into the water and connected to the seabed was always going to be the most difficult step,” said Aquamarine CEO Martin McAdam. “Its completion is a real credit to everyone who has worked hard on planning and executing this major engineering feat on schedule.”

The Oyster is designed to capture energy from near-shore waves. The system includes an oscillating pump fitted with double-acting water pistons. Each wave activates the pump, delivering high-pressure water by pipeline to an onshore turbine that generates electricity. All electrical components of the Oyster are onshore, making it durable enough to withstand Scotland’s rough seas, McAdam said.

Marine constructor Fugro Seacore installed the Oyster converter under a $2.9 million contract.

Read Full Post »

Older Posts »