Feeds:
Posts
Comments

Archive for the ‘Economic Issues’ Category

NAO NAKANISHI, Reuters, October 5, 2009

PelamisWaveFarm_PelamisWavePowerA first attempt fell victim to the crisis: now in the docks of Scotland’s ancient capital, a second-generation scarlet Sea Snake is being prepared to harness the waves of Britain’s northern islands to generate electricity.

Dwarfed by 180 metres of tubing, scores of engineers clamber over the device, which is designed to dip and ride the swelling sea with each move being converted into power to be channelled through subsea cables.

Due to be installed next spring at the European Marine Energy Centre (EMEC) in Orkney, northern Scotland, the wave power generator was ordered by German power company E.ON, reflecting serious interest in an emerging technology which is much more expensive than offshore wind.

Interest from the utility companies is driven by regulatory requirements to cut carbon emissions from electricity generation, and it helps in a capital-intensive sector.

Venture capitalists interested in clean tech projects typically have shorter horizons for required returns than the 10-20 years such projects can take, so the utilities’ deeper pockets and solid capital base are useful.

“Our view … is this is a 2020 market place,” said Amaan Lafayette, E.ON’s marine development manager. “We would like to see a small-scale plant of our own in water in 2015-2017, built on what we are doing here. It’s a kind of generation we haven’t done before.”

The World Energy Council has estimated the market potential for wave energy at more than 2,000 terawatt hours a year — or about 10% of world electricity consumption — representing capital expenditure of more than 500 billion pounds ($790 billion).

Island nation Britain has a leading role in developing the technology for marine power, which government advisor the Carbon Trust says could in future account for 20% of the country’s electricity. The government is stepping up support as part of a 405 million pound investment in renewable energy to help its ambition of cutting carbon emissions by 80% by 2050 from 1990 levels, while securing energy supply. (The challenge is more about getting to a place where we are comparable with other renewable technologies… We want to get somewhere around offshore wind,” said Lafayette.)

Britain’s Crown Estate, which owns the seabed within 12 nautical miles of the coast, is also holding a competition for a commercial marine energy project in Pentland Firth in northern Scotland.

Besides wave power, Britain is testing systems to extract the energy from tides: private company Marine Current Turbines Ltd (MCT) last year opened the world’s first large-scale tidal turbine SeaGen in Northern Ireland.

DEVELOPING LIKE WIND

wave_power_pelamis“We are often compared to the wind industry 20 years ago,” said Andrew Scott, project development manager at Pelamis Wave Power Ltd, which is developing the Sea Snake system, known as P2. Standing beside the train-sized serpent, Pelamis’ Scott said wave power projects are taking a variety of forms, which he said was similar to the development of the wind turbine. “You had vertical axis, horizontal axis and every kind of shapes before the industry consolidated on what you know as acceptable average modern day turbines.”

The Edinburgh Snake follows a pioneering commercial wave power project the company set up in Portugal last September, out of action since the collapse of Australian-based infrastructure group Babcock & Brown which held a majority share. “It’s easy to develop your prototypes and models in the lab, but as soon as you put them in water, it swallows capital,” said John Liljelund, CEO of Finnish wave energy firm AW-Energy, which just received $4.4 million from the European Union to develop its WaveRoller concept in Portugal.

At present, industry executives say marine power costs about double that from offshore wind farms, which require investment of around 2-3 million euros per megawatt. Solar panels cost about 3-4 million per megawatt, and solar thermal mirror power about 5 million.

UTILITY ACTION

Other utility companies involved in wave power trials include Spain’s Iberdrola, which has a small experimental wave farm using floating buoys called “Power Take- offs” off the coast of northern Spain. It is examining sites for a subsea tidal turbine project made by Norwegian company Hammerfest Strom.

Countries developing the technology besides Britain include Portugal, Ireland, Spain, South Korea and the United States: about 100 companies are vying for a share of the market, but only a handful have tested their work in the ocean.

Privately owned Pelamis has focussed on wave energy since 1998, has its own full-scale factory in Leith dock and sees more orders for the second generation in prospect.

Lafayette said E.ON examined more than 100 devices since 2001 before picking Sea Snake for its first ocean project, a three-year test: “They have a demonstrable track record … and commercial focus and business focus.”

A single Sea Snake has capacity of 750 kilowatts: by around 2015, Pelamis hopes each unit will have capacity of 20 megawatts, or enough to power about 30,000 homes.

Neither Pelamis nor E.ON would elaborate on the cost of the Sea Snake, but they said the goal is to bring it down to the level of offshore wind farms.

Advertisements

Read Full Post »

KATE GALBRAITH, The New York Times, August 27, 2009

berkeleysolar1When Greg Hare looked into putting solar panels on his ranch-style home in Magnolia, Tex., last year, he decided he could not afford it. “I had no idea solar was so expensive,” he recalled.

But the cost of solar panels has plunged lately, changing the economics for many homeowners. Mr. Hare ended up paying $77,000 for a large solar setup that he figures might have cost him $100,000 a year ago.

“I just thought, ‘Wow, this is an opportunity to do the most for the least,’ ” Mr. Hare said.

For solar shoppers these days, the price is right. Panel prices have fallen about 40% since the middle of last year, driven down partly by an increase in the supply of a crucial ingredient for panels, according to analysts at the investment bank Piper Jaffray.

The price drops — coupled with recently expanded federal incentives — could shrink the time it takes solar panels to pay for themselves to 16 years, from 22 years, in places with high electricity costs, according to Glenn Harris, chief executive of SunCentric, a solar consulting group. That calculation does not include state rebates, which can sometimes improve the economics considerably.

American consumers have the rest of the world to thank for the big solar price break.

Until recently, panel makers had been constrained by limited production of polysilicon, which goes into most types of panels. But more factories making the material have opened, as have more plants churning out the panels themselves — especially in China.

“A ton of production, mostly Chinese, has come online,” said Chris Whitman, the president of U.S. Solar Finance, which helps arrange bank financing for solar projects.

At the same time, once-roaring global demand for solar panels has slowed, particularly in Europe, the largest solar market, where photovoltaic installations are forecast to fall by 26% this year compared with 2008, according to Emerging Energy Research, a consulting firm. Much of that drop can be attributed to a sharp slowdown in Spain. Faced with high unemployment and an economic crisis, Spain slashed its generous subsidy for the panels last year because it was costing too much.

Many experts expect panel prices to fall further, though not by another 40%.

Manufacturers are already reeling from the price slump. For example, Evergreen Solar, which is based in Massachusetts, recently reported a second-quarter loss that was more than double its loss from a year earlier.

But some manufacturers say that cheaper panels could be a good thing in the long term, spurring enthusiasm among customers and expanding the market.

“It’s important that these costs and prices do come down,” said Mike Ahearn, the chief executive of First Solar, a panel maker based in Tempe, Ariz.

First Solar recently announced a deal to build two large solar arrays in Southern California to supply that region’s dominant utility. But across the United States, the installation of large solar systems — the type found on commercial or government buildings — has been hurt by financing problems, and is on track to be about the same this year as in 2008, according to Emerging Energy Research.

The smaller residential sector continues to grow: In California, by far the largest market in the country, residential installations in July were up by more than 50% compared with a year earlier. With prices dropping, that momentum looks poised to continue.

John Berger, chief executive of Standard Renewable Energy, the company in Houston that put panels on Mr. Hare’s home, said that his second-quarter sales rose by more than 225% from the first quarter.

“Was that as a product of declining panel prices? Almost certainly yes,” Mr. Berger said.

Expanded federal incentives have also helped spur the market. Until this year, homeowners could get a 30% tax credit for solar electric installations, but it was capped at $2,000. That cap was lifted on Jan. 1.

Mr. Hare in Texas cited the larger tax credit, which sliced about $23,000 from his $77,000 bill, as a major factor in his decision to go solar, in addition to the falling panel prices. Sensing a good deal, he even got a larger system than he had originally planned — going from 42 panels to 64. The electric bill on his 7,000-square-foot house and garage has typically run $600 to $700 a month, but he expects a reduction of 40-80%.

Mr. Berger predicts that with panel prices falling and the generous federal credit in place, utilities will start lowering rebates they offer to homeowners who put panels on their roofs.

One that has already done so is the Salt River Project, the main utility in Phoenix, which cut its homeowners’ rebate by 10% in June. Lori Singleton, the utility’s sustainability manager, said the utility had recently spent more than it budgeted for solar power, a result of a surge in demand as more solar installers moved into Arizona and government incentives kicked in.

California has been steadily bringing down its rebates. An impending 29% cut in rebates offered within the service area of Pacific Gas and Electric, the dominant utility in Northern California, means that “with the module price drop over the last few months, it is pretty much a wash,” Bill Stewart, president of SolarCraft, an installer in Novato, Calif., said in an e-mail message.

Even if falling rebates cancel out some of the solar panel price slump, more innovative financing strategies are also helping to make solar affordable for homeowners. This year about a dozen states — following moves by California and Colorado last year — have enacted laws enabling solar panels to be paid off gradually, through increased property taxes, after a municipality first shoulders the upfront costs.

Some installers have adopted similar approaches. Danita Hardy, a homeowner in Phoenix, had been put off by the prospect of spending $20,000 for solar panels — until she spotted a news item about a company called SunRun that takes on the upfront expense and recovers its costs gradually, in a lease deal, essentially through the savings in a homeowner’s electric bill.

“I thought well, heck, this might be doable,” said Ms. Hardy, who wound up having to lay out only $800 to get 15 solar panels for her home.

Read Full Post »

PODESTA, GORDON, HENDRICKS & GOLDSTEIN, Center for American Progress, September 21, 2009

ctr-4-american-progressWith unemployment at 9.5%, and oil and energy price volatility driving businesses into the ground, we cannot afford to wait any longer. It is time for a legislative debate over a comprehensive clean energy investment plan. We need far more than cap and trade alone.

The United States is having the wrong public debate about global warming. We are asking important questions about pollution caps and timetables, carbon markets and allocations, but we have lost sight of our principal objective: building a robust and prosperous clean energy economy. This is a fundamentally affirmative agenda, rather than a restrictive one. Moving beyond pollution from fossil fuels will involve exciting work, new opportunities, new products and innovation, and stronger communities. Our current national discussion about constraints, limits, and the costs of transition misses the real excitement in this proposition. It is as if, on the cusp of an Internet and telecommunications revolution, debate centered only on the cost of fiber optic cable. We are missing the big picture here.

Let’s be clear: Solving global warming means investment. Retooling the energy systems that fuel our economy will involve rebuilding our nation’s infrastructure. We will create millions of middle-class jobs along the way, revitalize our manufacturing sector, increase American competitiveness, reduce our dependence on oil, and boost technological innovation. These investments in the foundation of our economy can also provide an opportunity for more broadly shared prosperity through better training, stronger local economies, and new career ladders into the middle class. Reducing greenhouse gas pollution is critical to solving global warming, but it is only one part of the work ahead. Building a robust economy that grows more vibrant as we move beyond the Carbon Age is the greater and more inspiring challenge.

Reducing greenhouse gas emissions to avert dangerous global warming is a moral challenge, but it is also an economic, national security, social, and environmental imperative. The “cap and trade” provisions, which will set limits on pollution and create a market for emissions reductions that will ultimately drive down the cost of renewable energy and fuel, represent a very important first step and a major component in the mix of policies that will help build the coming low-carbon economy. But limiting emissions and establishing a price on pollution is not the goal in itself, and we will fall short if that is all we set out to do. Rather, cap and trade is one key step to reach the broader goal of catalyzing the transformation to an efficient and sustainable low-carbon economy. With unemployment at 9.5%, and oil and energy price volatility driving businesses into the ground, we cannot afford to wait any longer. It is time for a legislative debate over a comprehensive clean energy investment plan. We need far more than cap and trade alone.

This is not just an exercise in rhetoric. Articulating and elevating a comprehensive plan to invest in clean energy systems and more efficient energy use will affect policy development and the politics surrounding legislation now moving through the Senate, as well as international negotiations underway around the globe. The current debate, which splits the issue into the two buckets of “cap and trade” and “complementary policies,” has missed the comprehensive nature of the challenge and its solutions. It also emphasizes the challenge of pollution control instead of organizing policy for increased development, market growth, reinvestment in infrastructure, and job creation through the transition to a more prosperous, clean energy economy.

This paper lays out the framework for just such an investment-driven energy policy, the pieces of which work together to level the playing field for clean energy and drive a transformation of the economy. Importantly, many elements of this positive clean-energy investment framework are already codified within existing legislation such as the American Clean Energy and Security Act, passed by House of Representatives earlier this year. But with all the attention given to limiting carbon, too little attention has been placed on what will replace it. These critical pieces of America’s clean energy strategy should be elevated in the policy agenda and political debate as we move forward into the Senate, and used to help move legislation forward that advances a proactive investment and economic revitalization strategy for the nation.

Read the full report here.

Read Full Post »

Electric Light & Power, June 11, 2009

menu01onAs the Obama administration shapes its policy on transmission planning, siting and cost allocation, the Large Public Power Council (LPPC) has sent a joint letter voicing its transmission policy views and concerns to Energy Secretary Chu, Interior Secretary Salazar, Agriculture Secretary Vilsack, FERC Chairman Wellinghoff, White House Council on Environmental Quality Chair Sutley and Presidential Energy Advisor Carol Browner.

The letter was sent to the Obama policy makers by Bob Johnston, Chair of the 23 member not-for-profit utility organization. Members of the LPPC own and operate nearly 90% of the transmission investment owned by non-federal public power entities in the United States.

The LPPC told the Obama Administration that it is “most supportive of a framework for interconnection-wide planning that addresses the growing need to interconnect renewable resources to the grid.”

“Many of our members are leaders in renewable deployment and energy efficiency. We are committed to these policy goals and closely tied to the values of our local communities,” the LPPC emphasized. “But we also believe that creating a new planning bureaucracy could be costly and counterproductive in achieving needed infrastructure development.”

The LPPC voiced strong support for the region-wide planning process recently mandated by FERC Order 890 that directed implementation of new region-wide planning processes that the LPPC claims “require an unprecedented level of regional coordination, transparency and federal oversight.”

“It seems quite clear that federal climate legislation and a national renewable portfolio standard will further focus these planning processes, the LPPC asserted. “LPPC fully expects that the regional processes to which parties have recently committed will take on new urgency and purpose. Adding a planning bureaucracy to that mix will be time consuming and will likely delay rather than expedite transmission development.”

The LPPC also told the Obama policy makers that, “it would be unnecessary, inequitable and counterproductive to allocate the cost of a new transmission superhighway to all load serving entities without regard to their ability to use the facilities or their ability to rely on more economical alternatives to meet environmental goals.”

The LPPC contended, “that certain proposals it has reviewed to allocate the cost of new transmission on an interconnection-wide basis would provide an enormous and unnecessary subsidy to large scale renewable generation located far from load centers, at the expense of other, potentially more economical alternatives. Utilities, state regulators, and regional transmission organizations should determine how to meet the environmental goals established by Congress most effectively by making economic choices among the array of available options, without subsidy of one technology or market segment over others.”

The LPPC letter further claimed that the cost of a massive transmission build-out will be substantial and that cost estimates they had reviewed “appear to be meaningfully understated.” The LPPC estimates that nationwide costs for such a build-out “may range between $135 billion and $325 billion, equating to a monthly per customer cost between $14 and $35.  This is a critical matter for LPPC members, as advocates for the consumers we serve.”

The Large Public Power Council letter concluded by offering its support for additional federal siting authority for multi-state transmission facilities “in order to overcome the limited ability of individual states to address multi-state transmission projects to meet regional needs. LPPC is confident that such new authority can be undertaken in consultation with existing state siting authorities in a manner that capitalizes on existing expertise and ensures that state and local concerns are addressed in the siting process.”

The LPPC’s membership includes 23 of the nation’s largest publicly owned, not-for-profit energy systems. Members are located in 10 states and provide reliable, electricity to some of the largest cities in the U.S. including Los Angeles, Seattle, Omaha, Phoenix, Sacramento, San Antonio, Jacksonville, Orlando and Austin.

Read Full Post »

UCILLA WANG, The Greentech Innovations Report, June 9, 2009

sunpowerWhen Pacific Gas and Electric Co. announced a deal to buy solar power from a proposed 230-megawatt project last Friday, it shone a spotlight on a two-year-old company with a different business model than many startups who have inked similar deals with the utility.

The deal also raised the question: Who is NextLight?

NextLight Renewable Power, based in San Francisco, wants to be purely a power plant developer and owner. The deal with PG&E is the first power purchase agreement for the startup, which is funded by private equity firm Energy Capital Partners, said Jim Woodruff, vice president of regulatory and government affairs, in an interview Monday.

“We think the tech agnostic approach is a winning business model,” Woodruff said. “All the core skills that are necessary to develop power projects are the same” for solar or other types of power plants.

The company boasts managers who have experience developing power plants and transmission projects as well as negotiating renewable power purchases.

NextLight’s CEO, Frank De Rosa, worked for PG&E for 23 years and held various roles at the utility, including the director of renewable energy supply, before founding NextLight in 2007. Woodruff worked for Southern California Edison for more than 10 years, first as an in-house counsel and later as the manager of regulatory and legislative issues for the utility’s alternative power business.

NextLight has been developing other solar power projects on public and private land in western states, including a plan to install up to 150 megawatts of generation capacity in Boulder City, Nevada.

The Boulder City Council is slated to vote on whether to lease 1,100 acres of city land to NextLight tonight. The company would sell 3,000-megawatt hours of energy per year to the city if the project is built, Woodruff said.

PG&E signed the deal with NextLight after it had inked many power purchase agreements in recent years to buy solar power from startup companies with the ambition to both develop their own technologies as well as owning and operating solar farms.

Some of the projects seem to be moving along. A few have hit snags. The deal to buy power from Finavera, an ocean power developer in Canada, fell apart last year when the California Public Utilities Commission decided that the contract would be too costly to ratepayers (see California Rejects PG&E Contract for Wave Energy).

OptiSolar, which was supposed to build a 550-megawatt solar farm to sell power to PG&E, couldn’t raise enough money to operate its solar panel factory and develop solar farms.

First Solar, another solar panel maker based in Tempe, Ariz., bought OptiSolar’s project development business for $400 million in April this year. First Solar would use its own, cadmium-telluride solar panels, instead of the amorphous silicon solar panels OptiSolar was developing. PG&E has said that the power contract would remain in place.

NextLight, on the other hand, would pick different solar technologies instead of developing its own. The approach isn’t new – SunEdison was doing this before others joined the party.

But there is no guarantee that this approach would enable NextLight to deliver energy more cheaply, and neither NextLight nor PG&E would discuss the financial terms of their contract.

“Our priority is about diversification of the resources we use and the companies we work with,” said PG&E spokeswoman Jennifer Zerwer. “Contracting for renewable via [power purchase agreements] is beneficial because it helps grow that ecosystem of renewable development, and there is no risk to our customers.”

Rumors have been circulating about whether NextLight would use SunPower’s equipment for the 230-megawatt project, which is called AV Solar Ranch 1, particularly since the project’s website features a photo of SunPower panels.

Woodruff said NextLight hasn’t selected a panel supplier. The company and PG&E have agreed to use solar panels, but the utility wouldn’t have a final say on the supplier, Woodruff added.

Gordon Johnson, head of alternative energy research at Hapoalim Securities, also cast doubt on the SunPower rumor.  “Based on our checks, we do not believe [SunPower] won the PPA with NextLight,” Johnson wrote in a research note.

NextLight plans to start construction of the AV Solar Ranch project in the third quarter of 2010 and complete it by 2013. The company said it would start delivering power in 2011.

The project would be located on 2,100 acres in Antelope Valley in Los Angeles County, Woodruff said. The company bought the property last year for an undisclosed sum.

The company would need approval from the Los Angeles County to construct the solar farm. The California Public Utilities Commission would need to approve the power purchase contract between PG&E and NextLight.

NextLight also is developing a power project with up to 425 megawatts in generation capacity in southern Arizona.  The company is negotiating to a farmland for the Agua Caliente Solar Project, Woodruff said. The 3,800 acres are located east of the city of Yuma.

The company is negotiating with a utility to buy power from Agua Caliente, said Woodruff, who declined to name the utility.

NextLight hasn’t decided whether to install solar panels or build a solar thermal power plant for the Agua Caliente project. Solar thermal power plants use mirrors to concentrate the sunlight for heating water or mineral oils to generate steam. The steam is then piped to run electricity-generating turbines.

But solar panels appear to be a more attractive option than solar thermal for now, Woodruff said.

“We’ve concluded that, in the near term, PV is more cost effective,” he said.

Read Full Post »

MARK CLAYTON, The Christian Science Monitor, June 8, 2009

article_photo1_smWhen giving his slide presentation on America’s new energy direction, Jon Wellinghoff sometimes sneaks in a picture of himself seated in a midnight blue, all-electric Tesla sports car.

It often wins a laugh, but makes a key point: The United States is accelerating in a new energy direction under President Obama’s newly appointed chairman of the Federal Energy Regulatory Commission (FERC). At the same time, FERC’s key role in the nation’s energy future is becoming more apparent.

Energy and climate legislation now pending in Congress would put in FERC’s hands a sweeping market-based cap-and-trade system intended to lower industrial greenhouse-gas emissions.

Besides its role granting permits for new offshore wind power, the agency is also overseeing planning for transmission lines that could one day link Dakota wind farms to East Coast cities, and solar power in the Southwest to the West Coast.

“FERC has always been important to power development,” says Ralph Cavanagh, energy program codirector for the Natural Resources Defense Council, a New York-based environmental group. “It’s just that people haven’t known about it. They will pretty soon.”

That’s because Mr. Wellinghoff and three fellow commissioners share an affinity for efficiency and renewable energy that’s not just skin-deep, Mr. Cavanagh and others say.

Wellinghoff started his energy career as a consumer advocate for utility customers in Nevada before being appointed by President Bush in 2005 as a FERC commissioner. He was a key author of “renewable portfolio standards” that require Nevada’s utilities to incorporate more renewable power in their energy mix. Now he’s the nation’s top energy regulator.

It’s clear that FERC has a mandate to speed change to the nation’s power infrastructure, Wellinghoff says.

When it comes to the extra work and complexity FERC will encounter if Congress appoints FERC to administer a mammoth carbon-emissions cap-and-trade program, Wellinghoff is eager, yet circumspect.

“We believe we are fully capable of fulfilling that role with respect to physical trading [of carbon allowances],” he says during an interview in Washington. “We’ve demonstrated our ability to respond efficiently and effectively to undertake those duties Congress has given to us. Unfortunately, the result of that is they give you more to do.”

While the US Department of Energy controls long-term energy investment decisions, FERC’s four commissioners (a fifth seat is vacant) appear determined to ensure that wind, solar, geothermal, and ocean power get equal access to the grid.

The commissioners are also biased against coal and nuclear power on at least one key factor: cost.

Many in the power industry believe that renewable energy still costs too much. Not Wellinghoff, who says: “I see these distributed resources [solar, wind, natural-gas microturbines, and others] coming on right now as being generally less expensive.”

That might sound surprising. Yet, with coal and nuclear power plants costing billions of dollars – and raising environmental issues such as climate change and radioactive waste – others also see renewable power as the low-cost option.

Wellinghoff’s outspoken views have irritated some since his March selection as chairman.

Last month, for instance, he drew fire from nuclear-energy boosters in Congress after he characterized as “an anachronism” the idea of meeting future US power demand by building large new coal-fired and nuclear power plants.

“You don’t need fossil fuel or nuclear [plants] that run all the time,” Wellinghoff told reporters at a US Energy Association Forum last month. Then he added: “We may not need any, ever.”

That set off a salvo from Sen. Lind sey Graham (R) of South Carolina, a staunch nuclear-power advocate. “The public is ill-served when someone in such a prominent position suggests alternative-energy programs are developed and in such a state that we should abandon our plans to build more plants,” he said in a statement.

But to others, Wellinghoff is the epitome of what the US needs: a public servant zeroed in on energy security, the environment, efficiency, and keeping energy costs down.

“Wellinghoff has been a longtime supporter of efficiency and consumer interests,” says Steven Nadel, executive director of the American Council for an Energy Efficient Economy, an energy advocacy group. “I would call him a visionary. He’s not just content with the status quo.”

In Wellinghoff’s vision of the future, where the cost of carbon dioxide emissions is added to the price of coal-fired power plants and natural-gas turbines, it may be less expensive for consumers to set their appliances to avoid buying power at peak times. Or they may choose to buy power from a collection of microturbines, fuel cell, wind, solar, biomass, and ocean power systems.

“We’re going to see more distributed generation – and we’re already starting to see that happen,” Wellinghoff says. “Not only renewable generation like photovoltaic [panels] that people put on their homes and businesses, but also fossil-fuel systems like combined heat and power,” called cogeneration units.

To coordinate and harmonize this fluctuating phalanx of power sources, customers will need to know and be able to respond to the price of power, Wellinghoff says. They will also need a new generation of appliances that switch off automatically to balance power supply and demand peaks.

But there are huge challenges with a power grid that provides energy from a mix of wind, solar, and other renewable power.

“You’re going to have to upgrade this whole grid [along the East Coast], he says. “You can’t just move [wind and wave power] from offshore to load centers onshore without looking at the effect on reliability – Florida to Maine.”

As the percentage of renewable power rises toward 20 to 25% of grid power from around 3% today, there must be a backup to fill gaps when intermittent winds stop blowing or the sun doesn’t shine.

In a decade or more from now, Wellinghoff, says millions of all-electric or plug-in electric-gas hybrid vehicles could plug into the grid and supply spurts of power to fill in for dipping wind and solar output.

“There are new technologies,” he says, “that in the next three to five years will advance the grid to a new level.”

Gesturing to a drawing board on the wall, he hops up from his chair, his hands flicking across a sketch of the eastern half of the US with power lines fanning out from the Plains states to the East Coast.

“This is another grid option that would take a lot of power that’s now constrained in the Midwest, that can be developed – wind energy there – and move it to all the load centers [cities] on the East Coast,” he says.

Similarly, lines could be built across the Rockies to connect wind power in Montana and Wyoming to the West Coast. Instead of building power lines from the Midwest to the East Coast, “a lot of people would say, ‘No, no, let’s look first look at the wind offshore,’ ” he says.

Whether it’s wind from the Plains or the ocean, the resulting variability will have an impact on grid reliability if action isn’t taken, Wellinghoff says.

“You’re going to have to upgrade this whole grid here,” he says, gesturing to the East Coast. “You can’t just move [power] from offshore to load centers onshore without looking at the effect on reliability.”

Reliability of the grid remains paramount – Job No. 1 for the Federal Energy Regulatory Commission. But if boosting renewable power to 25% by 2025 – the Obama administration’s goal – means spreading Internet-connected controllers across substations and transmission networks, then cybersecurity to protect them from increasing Internet-based threats is critical.

Yet a recent review by the North American Electric Reliability Corporation overseen by FERC found more than two-thirds of power generating companies denied they had any “critical assets” potentially vulnerable to cyberattack. Those denials concern Wellinghoff.

“We are asking the responding utilities to go back and reveal what are the number of critical assets and redetermine that for us,” he says. “We want to be sure that we have fully identify all the critical assets that need to be protected.”

It would be especially troubling if, as was recently reported by The Wall Street Journal, Russian and Chinese entities have hacked into the US power grid and left behind malware that could be activated at a later time to disable the grid.

But Wellinghoff says he has checked on the type of intrusion referred to in the article and denies successful grid hacks by foreign nations that have left dangerous malware behind.

While acknowledging that individuals overseas have tried to hack the grid frequently, he says, “I’m not aware of any successful hacks that have implanted into the grid any kinds of malware or other code that could later be activated.”

But others say there is a problem. In remarks at the University of Texas at Austin in April, Joel Brenner, the national counterintelligence executive, the nation’s most senior counterintelligence coordinator, indicated there are threats to the grid.

“We have seen Chinese network operations inside certain of our electricity grids,” he said in prepared remarks. “Do I worry about those grids, and about air traffic control systems, water supply systems, and so on? You bet I do.”

In an e-mailed statement, Wellinghoff’s press secretary, Mary O’Driscoll, says the chairman defers to senior intelligence officials on some questions concerning grid vulnerability to cyberattack: “The Commission isn’t in the intelligence gathering business and therefore can’t comment on that type of information.”

Read Full Post »

JAMES RICKMAN, Seeking Alpha, June 8, 2009

wave-ocean-blue-sea-water-white-foam-photoOceans cover more than 70% of the Earth’s surface. As the world’s largest solar collectors, oceans generate thermal energy from the sun. They also produce mechanical energy from the tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives the tides, and the wind powers the ocean waves.

Wave energy is the capture of the power from waves on the surface of the ocean. It is one of the newer forms of renewable or ‘green’ energy under development, not as advanced as solar energy, fuel cells, wind energy, ethanol, geothermal companies, and flywheels. However, interest in wave energy is increasing and may be the wave of the future in coastal areas according to many sources including the International Energy Agency Implementing Agreement on Ocean Energy Systems (Report 2009).

Although fewer than 12 MW of ocean power capacity has been installed to date worldwide, we find a significant increase of investments reaching over $2 billion for R&D worldwide within the ocean power market including the development of commercial ocean wave power combination wind farms within the next three years.

Tidal turbines are a new technology that can be used in many tidal areas. They are basically wind turbines that can be located anywhere there is strong tidal flow. Because water is about 800 times denser than air, tidal turbines will have to be much sturdier than wind turbines. They will be heavier and more expensive to build but will be able to capture more energy. For example, in the U.S. Pacific Northwest region alone, it’s feasible that wave energy could produce 40–70 kilowatts (kW) per meter (3.3 feet) of western coastline. Renewable energy analysts believe there is enough energy in the ocean waves to provide up to 2 terawatts of electricity.

Companies to Watch in the Developing Wave Power Industry:

Siemens AG (SI) is a joint venture partner of Voith Siemens Hydro Power Generation, a leader in advanced hydro power technology and services, which owns Wavegen, Scotland’s first wave power company. Wavegen’s device is known as an oscillating water column, which is normally sited at the shoreline rather than in open water. A small facility is already connected to the Scottish power grid, and the company is working on another project in Northern Spain.

Ocean Power Technologies, Inc (OPTT) develops proprietary systems that generate electricity through ocean waves. Its PowerBuoy system is used to supply electricity to local and regional electric power grids. Iberdrola hired the company to build and operate a small wave power station off Santona, Spain, and is talking with French oil major Total (TOT) about another wave energy project off the French coast. It is also working on projects in England, Scotland, Hawaii, and Oregon.

Pelamis Wave Power, formerly known as Ocean Power Delivery, is a privately held company which has several owners including various venture capital funds, General Electric Energy (GE) and Norsk Hydro ADR (NHYDY.PK). Pelamis Wave Power is an excellent example of Scottish success in developing groundbreaking technology which may put Scotland at the forefront of Europe’s renewable revolution and create over 18,000 green high wage jobs in Scotland over the next decade. The Pelamis project is also being studied by Chevron (CVX).

Endesa SA ADS (ELEYY.PK) is a Spanish electric utility which is developing, in partnership with Pelamis, the world’s first full scale commercial wave power farm off Aguçadoura, Portugal which powers over 15,000 homes. A second phase of the project is now planned to increase the installed capacity from 2.25MW to 21MW using a further 25 Pelamis machines.

RWE AG ADR (RWEOY.PK) is a German management holding company with six divisions involved in power and energy. It is developing wave power stations in Siadar Bay on the Isle of Lewis off the coast of Scotland.

Australia’s Oceanlinx offers an oscillating wave column design and counts Germany’s largest power generator RWE as an investor. It has multiple projects in Australia and the U.S., as well as South Africa, Mexico, and Britain.

Alstom (AOMFF.PK) has also announced development in the promising but challenging field of capturing energy from waves and tides adding to the further interest from major renewable power developers in this emerging industry.

The U.S. Department of Energy has announced several wave energy developments including a cost-shared value of over $18 million, under the DOE’s competitive solicitation for Advanced Water Power Projects. The projects will advance commercial viability, cost-competitiveness, and market acceptance of new technologies that can harness renewable energy from oceans and rivers. The DOE has selected the following organizations and projects for grant awards:

First Topic Area: Technology Development (Up to $600,000 for up to two years)

Electric Power Research Institute, Inc (EPRI) (Palo Alto, Calif.) Fish-friendly hydropower turbine development & deployment. EPRI will address the additional developmental engineering required to prepare a more efficient and environmentally friendly hydropower turbine for the commercial market and allow it to compete with traditional designs.

Verdant Power Inc. (New York, N.Y.) Improved structure and fabrication of large, high-power kinetic hydropower systems rotors. Verdant will design, analyze, develop for manufacture, fabricate and thoroughly test an improved turbine blade design structure to allow for larger, higher-power and more cost-effective tidal power turbines.

Public Utility District #1 of Snohomish County (SnoPUD) (Everett, Wash.) Puget Sound Tidal Energy In-Water Testing and Development Project. SnoPUD will conduct in-water testing and demonstration of tidal flow technology as a first step toward potential construction of a commercial-scale power plant. The specific goal of this proposal is to complete engineering design and obtain construction approvals for a Puget Sound tidal pilot demonstration plant in the Admiralty Inlet region of the Sound.

Pacific Gas and Electric Company – San Francisco, Calif. WaveConnect Wave Energy In-Water Testing and Development Project. PG&E will complete engineering design, conduct baseline environmental studies, and submit all license construction and operation applications required for a wave energy demonstration plant for the Humboldt WaveConnect site in Northern California.

Concepts ETI, Inc (White River Junction, Vt.) Development and Demonstration of an Ocean Wave Converter (OWC) Power System. Concepts ETI will prepare detailed design, manufacturing and installation drawings of an OWC. They will then manufacture and install the system in Maui, Hawaii.

Lockheed Martin Corporation (LMT) – Manassas, Va., Advanced Composite Ocean Thermal Energy Conversion – “OTEC”, cold water pipe project. Lockheed Martin will validate manufacturing techniques for coldwater pipes critical to OTEC in order to help create a more cost-effective OTEC system.

Second Topic Area, Market Acceleration (Award size: up to $500,000)

Electric Power Research Institute (Palo Alto, Calif.) Wave Energy Resource Assessment and GIS Database for the U.S. EPRI will determine the naturally available resource base and the maximum practicable extractable wave energy resource in the U.S., as well as the annual electrical energy which could be produced by typical wave energy conversion devices from that resource.

Georgia Tech Research Corporation (Atlanta, Ga.) Assessment of Energy Production Potential from Tidal Streams in the U.S. Georgia Tech will utilize an advanced ocean circulation numerical model to predict tidal currents and compute both available and effective power densities for distribution to potential project developers and the general public.

Re Vision Consulting, LLC (Sacramento, Calif.) Best Siting Practices for Marine and Hydrokinetic Technologies With Respect to Environmental and Navigational Impacts. Re Vision will establish baseline, technology-based scenarios to identify potential concerns in the siting of marine and hydrokinetic energy devices, and to provide information and data to industry and regulators.

Pacific Energy Ventures, LLC (Portland, Ore.) Siting Protocol for Marine and Hydrokinetic Energy Projects. Pacific Energy Ventures will bring together a multi-disciplinary team in an iterative and collaborative process to develop, review, and recommend how emerging hydrokinetic technologies can be sited to minimize environmental impacts.

PCCI, Inc. (Alexandria, Va.) Marine and Hydrokinetic Renewable Energy Technologies: Identification of Potential Navigational Impacts and Mitigation Measures. PCCI will provide improved guidance to help developers understand how marine and hydrokinetic devices can be sited to minimize navigational impact and to expedite the U.S. Coast Guard review process.

Science Applications International Corporation (SAI) – San Diego, Calif., International Standards Development for Marine and Hydrokinetic Renewable Energy. SAIC will assist in the development of relevant marine and hydrokinetic energy industry standards, provide consistency and predictability to their development, and increase U.S. industry’s collaboration and representation in the development process.

Third Topic Area, National Marine Energy Centers (Award size: up to $1.25 million for up to five years)

Oregon State University, and University of Washington – Northwest National Marine Renewable Energy Center. OSU and UW will partner to develop the Northwest National Marine Renewable Energy Center with a full range of capabilities to support wave and tidal energy development for the U.S. Center activities are structured to: facilitate device commercialization, inform regulatory and policy decisions, and close key gaps in understanding.

University of Hawaii (Honolulu, Hawaii) National Renewable Marine Energy Center in Hawaii will facilitate the development and implementation of commercial wave energy systems and to assist the private sector in moving ocean thermal energy conversion systems beyond proof-of-concept to pre-commercialization, long-term testing.

Types of Hydro Turbines

There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water— the flow, or volume of water, at the site. Other deciding factors include how deep the turbine must be set, efficiency, and cost.

Impulse Turbines

The impulse turbine generally uses the velocity of the water to move the runner and discharges to atmospheric pressure. The water stream hits each bucket on the runner. There is no suction on the down side of the turbine, and the water flows out the bottom of the turbine housing after hitting the runner. An impulse turbine, for example Pelton or Cross-Flow is generally suitable for high head, low flow applications.

Reaction Turbines

A reaction turbine develops power from the combined action of pressure and moving water. The runner is placed directly in the water stream flowing over the blades rather than striking each individually. Reaction turbines include the Propeller, Bulb, Straflo, Tube, Kaplan, Francis or Kenetic are generally used for sites with lower head and higher flows than compared with the impulse turbines.

Types of Hydropower Plants

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not.

Many dams were built for other purposes and hydropower was added later. In the United States, there are about 80,000 dams of which only 2,400 produce power. The other dams are for recreation, stock/farm ponds, flood control, water supply, and irrigation. Hydropower plants range in size from small systems for a home or village to large projects producing electricity for utilities.

Impoundment

The most common type of hydroelectric power plant (above image) is an impoundment facility. An impoundment facility, typically a large hydropower system, uses a dam to store river water in a reservoir. Water released from the reservoir flows through a turbine, spinning it, which in turn activates a generator to produce electricity. The water may be released either to meet changing electricity needs or to maintain a constant reservoir level.

The Future of Ocean and Wave Energy

Wave energy devices extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in the ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

Wave energy rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, Japan, Australia, and the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it’s feasible that wave energy could produce 40–70 kilowatts (kW) per meter (3.3 feet) of western coastline. The West Coast of the United States is more than a 1,000 miles long.
In general, careful site selection is the key to keeping the environmental impacts of wave energy systems to a minimum. Wave energy system planners can choose sites that preserve scenic shorefronts. They also can avoid areas where wave energy systems can significantly alter flow patterns of sediment on the ocean floor.

Economically, wave energy systems are just beginning to compete with traditional power sources. However, the costs to produce wave energy are quickly coming down. Some European experts predict that wave power devices will soon find lucrative niche markets. Once built, they have low operation and maintenance costs because the fuel they use — seawater — is FREE.

The current cost of wave energy vs. traditional electric power sources?

It has been estimated that improving technology and economies of scale will allow wave generators to produce electricity at a cost comparable to wind-driven turbines, which produce energy at about 4.5 cents kWh.

For now, the best wave generator technology in place in the United Kingdom is producing energy at an average projected/assessed cost of 6.7 cents kWh.

In comparison, electricity generated by large scale coal burning power plants costs about 2.6 cents per kilowatt-hour. Combined-cycle natural gas turbine technology, the primary source of new electric power capacity is about 3 cents per kilowatt hour or higher. It is not unusual to average costs of 5 cents per kilowatt-hour and up for municipal utilities districts.

Currently, the United States, Brazil, Europe, Scotland, Germany, Portugal, Canada and France all lead the developing wave energy industry that will return 30% growth or more for the next five years.

Read Full Post »

Older Posts »