Feeds:
Posts
Comments

Posts Tagged ‘Smart Grid’

MendoCoastCurrent, June 25, 2010

The Federal Energy Regulatory Commission (FERC) today proposed to build on its Order No. 890 open access transmission reforms by establishing a closer link between regional electric transmission planning and cost allocation to help ensure that needed transmission facilities actually are built.

The Notice of Proposed Rulemaking (NOPR) is based on an extensive record: three years of monitoring implementation of Order No. 890, three regional technical conferences and examination of more than 150 sets of comments filed in response to an October 2009 request for comment on transmission planning and cost allocation. It proposes and seeks comment on requiring:

  • Transmission providers to establish a closer link between cost allocation and regional transmission planning by identifying and establishing cost allocation methods for beneficiaries of new transmission facilities;
  • Transmission planning to take into account needs driven by public policy requirements established by state or federal laws or regulations;
  • Neighboring transmission planning regions to improve their coordination with respect to facilities that are proposed to be constructed in two adjacent regions and could address transmission needs more efficiently than separate intraregional facilities; and
  • The removal from Commission-approved tariffs or agreements provisions that provide an undue advantage to an incumbent developer so that sponsors of transmission projects have the right, consistent with state or local laws or regulations, to build and own facilities selected for inclusion in regional transmission plans.

“Our nation needs a transmission grid that can accommodate rising consumer demand for a more diverse mix of power generators and the sophisticated technology of the smart grid,” FERC Chairman Jon Wellinghoff said. “To do that, we must make sure FERC transmission policies are open and fair to all.”

A significant aspect of the proposal is the requirement that transmission planning take into account public policy requirements, such as state-mandated renewable portfolio standards. Doing so during the transmission planning process will help ensure these legal requirements are met in a way that is fair and efficient to transmission customers.

The proposal also ties cost allocation to the regional transmission planning processes to facilitate the transition from planning to implementation. This ensures that only those consumers benefiting from transmission facilities are charged for associated costs, and gives each region the first opportunity to develop cost allocation mechanisms and identify how the benefits of transmission facilities will be determined. Comments are due 60 days after publication in the Federal Register.

Read Full Post »

JEFF ST.  JOHN, Earth2Tech, March 1, 2010

Federal Energy Regulatory Commission Chairman Jon Wellinghoff wants his agency to have a lot more authority over planning cross-state transmission lines, as well as getting states and utilities to share the costs of building them. But on Monday, the utility industry pushed back. The Coalition for Fair Transmission Policy — an industry group made up of 10 big utilities including Southern Co., Consolidated Edison, Alliant, DTE Energy, PPL, Progress Energy and PSEG — says it will lobby to change proposed Senate legislation that it says could unfairly spread the costs of building big new transmission lines across multiple states. Or, to put it another way, “states and regions that get the benefits of new transmission should be the ones to pay for them,” Bruce Edelston, the coalition’s executive director, said Monday.

The coalition has a specific target —Senate Bill 1462, otherwise known as the American Clean Leadership Act. It wants to take out language from the bill that would give FERC more authority over transmission lines, and replace it with language that “precludes the allocation of transmission expansion costs to electric consumers unless there are measurable economic or reliability benefits for those consumers.”

Wellinghoff has said his agency needs more power to force states to agree on new ways to share the costs of massive new transmission lines to carry clean power from the places it’s most cheaply produced to where it’s most needed. Without it, he told a Senate panel in March, “it is unlikely that the Nation will be able to achieve energy security and economic stability.”

But FERC having more power could involve, for example, a transmission line from a North Dakota wind farm to Illinois’ Chicago suburbs, which might cross three states along its route. How should those “middle mile” states, which have to give up land and cover some costs of maintaining those lines, but may not receive power, be given a piece of the action? In Edelston’s view, the costs and benefits of such undertakings should be shared equally among all regions that have to give something up to let them happen. If a project can’t pay for itself while providing some financial benefit to utility customers in each of those states, it shouldn’t get built, he said.

President Barack Obama has called for 3,000 miles of new transmission lines to be built to help the country double its renewable energy use by 2012. Estimates on the costs of this new interstate energy highway system range from $100 billion to $200 billion, Edelston said — and those costs may be underestimated. A consortium of Eastern power grid operators said last year that transmission to carry wind power from the Midwest to the East could cost $80 billion over the next 15 years or so.

Wellinghoff has said that with such scale of the transmission lines needed, it might be hard to move quickly through the complicated, state-by-state siting and permitting mechanisms now in place — and that’s not to mention the universal opposition to having high-voltage power lines running through your backyard or environmentally sensitive region. For a sampling of the barriers to new transmission lines even within one state’s boundaries, look to California, where one big transmission line in the Central Valley was canceled in the face of local landowner and environmental opposition, and another in San Diego and Imperial counties is being challenged in court.

But Edelston pointed out that transmission projects are still moving forward under business-as-usual conditions, and several projects are underway by “Green Power Express” developer ITC for example. Other private efforts are underway, such as the Tres Amigas project that would connect the nation’s three mega-grid systems in the East, West and in Texas. Transmission projects take years to plan, permit and build, however, making long-range financing a challenge.

Not all utilities are against FERC’s sought-after expanded authority. American Electric Power, which serves 11 states, urged a Senate panel in March to expand federal authority over new transmission lines, including more broad cost-sharing, saying the economic benefits will outweigh the costs. FERC has already signed a MOU with EPA and the departments of Agriculture, Commerce, Defense, Energy and the Interior to work together on siting and permitting new transmission lines on federal lands, but that doesn’t necessarily solve the problem of states and their utilities arguing over costs and benefits.

For companies making next-generation transmission equipment such as HVDC and superconducting wire and cable — not to mention developers of utility-scale renewable power projects in hard-to-reach areas — it’s an important controversy to keep an eye on.

Read Full Post »

DAVID TOW, Future Planet, January 16, 2010

By 2015 India and China will both have outstripped the US in energy consumption by a large margin. Cap and Trade carbon markets will have been established by major developed economies, including India and China, as the most effective way to limit carbon emissions and encourage investment in renewable energy, reforestation projects etc.

There will have been a significant shift by consumers and industry to renewable energy technologies- around 25%, powered primarily by the new generation adaptive wind and solar energy mega-plants, combined with the rapid depletion of the most easily accessible oil fields. Coal and gas will continue to play a major role at around 60% useage, with clean coal and gas technologies still very expensive. Nuclear technology will remain static at 10% and hydro at 5%.

Most new vehicles and local transport systems will utilise advanced battery or hydrogen electric power technology, which will continue to improve energy density outputs.

Efficiency and recycling savings of the order of 30% on today’s levels will be available from the application of smart adaptive technologies in power grids, communication, distribution and transport networks, manufacturing plants and consumer households. This will be particularly critical for the sustainability of cities across the planet. Cities will also play a critical role in not only supporting the energy needs of at least 60% of the planet’s population through solar, wind, water and waste energy capture but will feed excess capacity to the major power grids, providing a constant re-balancing of energy supply across the world.

By 2025 a global Cap and Trade regime will be mandatory and operational worldwide. Current oil sources will be largely exhausted but the remaining new fields will be exploited in the Arctic, Antarctic and deep ocean locations.  Renewable energy will account for 40% of useage, including baseload power generation. Solar and wind power will dominate in the form of huge desert solar and coastal and inland wind farms; but all alternate forms- wave, geothermal, secondary biomass, algael etc will begin to play a significant role.

Safer helium-cooled and fast breeder fourth generation modular nuclear power reactors will replace many of the older water-cooled and risk-prone plants, eventually  accounting for around 15% of energy production; with significant advances in the storage of existing waste in stable ceramic materials.

By 2035 global warming will reach a critical threshold with energy useage tripling from levels in 2015, despite conservation and efficiency advances. Renewables will account for 60% of the world’s power supply, nuclear 15% and fossils 25%. Technologies to convert CO2 to hydocarbon fuel together with more efficient recycling and sequestration, will allow coal and gas to continue to play a significant role.

By 2045-50 renewables will be at 75-80% levels, nuclear 12% and clean fossil fuels 10-15%. The first Hydrogen and Helium3 pilot fusion energy plants will be commissioned, with large-scale generators expected to come on stream in the latter part of the century, eventually reducing carbon emissions to close to zero.

However the above advances will still be insufficient to prevent the runaway effects of global warming. These long-term impacts will raise temperatures well beyond the additional two-three degrees centigrade critical limit.

Despite reduction in emissions by up to 85%, irreversible and chaotic feedback impacts on the global biosphere will be apparent. These will be triggered by massive releases of methane from permafrost and ocean deposits, fresh water flows from melting ice causing disruptions to ocean currents and weather patterns.

These will affect populations beyond the levels of ferocity of the recent Arctic freeze, causing chaos in the northern hemisphere and reaching into India and China and the droughts and heat waves of Africa, the Middle East and Australia.

The cycle of extreme weather events and rising oceans that threaten to destroy many major coastal cities will continue to increase, compounded by major loss of ecosystems, biodiversity and food capacity. This will force a major rethink of the management of energy and climate change as global catastrophe threatens.

Increasingly desperate measures will be canvassed and tested, including the design of major geo-engineering projects aimed at reducing the amount of sunlight reaching earth and reversal of the acidity of the oceans. These massive infrastructure projects would have potentially enormous ripple-on effects on all social, industrial and economic systems. They are eventually assessed to be largely ineffective, unpredictable and unsustainable.

As forecasts confirm that carbon levels in the atmosphere will remain high for the next 1,000 years, regardless of mitigating measures, priorities shift urgently to the need to minimise risk to life on a global scale, while protecting civilisation’s core infrastructure, social, knowledge and cultural assets.

Preserving the surviving natural ecosystem environment and the critical infrastructure of the built environment, particularly the Internet and Web, will now be vital. The sustainability of human life on planet Earth, in the face of overwhelming catastrophe, will be dependent to a critical degree on the power of the intelligent Web 4.0, combining human and artificial intelligence to manage food, water, energy and human resources.

Only the enormous problem-solving capacity of this human-engineered entity, will be capable of ensuring the continuing survival of civilisation as we know it.

Read Full Post »

RenewableEnergyFocus.com, November 25, 2009

The U.S. Department of Energy (DOE) will fund $18 million to support small business innovation research, development and deployment of clean and renewable energy technologies, including projects to advance wave and current energy technologies, ocean thermal energy conversion systems, and concentrating solar power (CSP) for distributed applications.

The funding will come from the American Recovery & Reinvestment Act and, in this first phase of funding, 125 grants of $150,000 each will be awarded to 107 small advanced technology firms across the United States for clean and renewable energy. The companies were selected from a pool of 950 applicants through a special fast-track process with an emphasis on near-term commercialization and job creation.

Companies which demonstrate successful results with their new clean and renewable technologies and show potential to meet market needs, will be eligible for $60m in a second round of grants in the summer of 2010.

“Small businesses are drivers of innovation and are crucial to the development of a competitive clean energy US economy,” says Energy Secretary Steven Chu. “These investments will help ensure small businesses are able to compete in the clean energy economy, creating jobs and developing new technologies to help decrease carbon pollution and increase energy efficiency.”

Grants were awarded in 10 clean and renewable energy topic areas, including $2.8m for 12 projects in Advanced Solar Technologies where projects will focus on achieving significant cost and performance improvements over current technologies, solar-powered systems that produce fuels, and concentrated solar power systems for distributed applications.

Another $1.7m will go to 12 clean and renewable energy projects in Advanced Water Power Technology Development where projects will focus on new approaches to wave and current energy technologies and ocean thermal energy conversion systems.

Other key areas are:

  • Water Usage in Electric Power Production (decreasing the water used in thermoelectric power generation and developing innovative approaches to desalination using Combined Heat and Power projects);
  • Advanced Building Air Conditioning and Cool Roofs (improve efficiency of air conditioning and refrigeration while reducing GHG emissions);
  • Power Plant Cooling (advanced heat exchange technology for power plant cooling);
    Smart Controllers for Smart Grid Applications (develop technologies to support electric vehicles and support of distributed energy generation systems);
  • Advanced Industrial Technologies Development (improve efficiency and environmental performance in the cement industry);
  • Advanced Manufacturing Processes (improving heat and energy losses in energy intensive manufacturing processes);
  • Advanced Gas Turbines and Materials (high performance materials for nuclear applications and novel designs for high-efficiency and low-cost distributed power systems); and
  • Sensors, Controls, and Wireless Networks (building applications to minimise power use and power line sensor systems for the smart grid).

Read Full Post »

Globe.Net, October 27, 2009

President Barack Obama has announced the largest single energy grid modernization investment in U.S. history, funding a broad range of technologies that will create tens of thousands of jobs, save energy and allow consumers to cut their electric bills.

Speaking at Florida Power and Light’s (FPL) DeSoto Next Generation Solar Energy Center, President Barack Obama today announced the largest single energy grid modernization investment in U.S. history, funding a broad range of technologies that will spur the nation’s transition to a smarter, stronger, more efficient and reliable electric system.

The $3.4 billion in grant awards – part of the American Reinvestment and Recovery Act – will be matched by industry funding for a total public-private investment worth over $8 billion. Full listings of the grant awards by category and state are available here and a map of the awards is available here.

An analysis by the Electric Power Research Institute (EPRI) estimates that the implementation of smart grid technologies could reduce electricity use by more than 4% by 2030.  That would mean a savings of $20.4 billion for businesses and consumers around the country. One-hundred private companies, utilities, manufacturers, cities and other partners received Smart Grid Investment Grant awards today, including FPL, which will use its $200 million in funding to install over 2.5 million smart meters and other technologies that will cut energy costs for its customers.

The awards announced represent the largest group of Recovery Act awards ever made in a single day and the largest batch of Recovery Act clean energy grant awards to-date. The announcements include:

  • Empowering Consumers to Save Energy and Cut Utility Bills — $1 billion. These investments will create the infrastructure and expand access to smart meters and customer systems so that consumers will be able to access dynamic pricing information and have the ability to save money by programming smart appliances and equipment to run when rates are lowest.
  • Making Electricity Distribution and Transmission More Efficient — $400 million. The Administration is funding several grid modernization projects across the country that will significantly reduce the amount of power that is wasted from the time it is produced at a power plant to the time it gets to your house.  By deploying digital monitoring devices and increasing grid automation, these awards will increase the efficiency, reliability and security of the system, and will help link up renewable energy resources with the electric grid.
  • Integrating and Crosscutting Across Different “Smart” Components of a Smart Grid — $2 billion. Much like electronic banking, the Smart Grid is not the sum total of its components but how those components work together.  The range of projects funded will incorporate various components into one system – including smart meters, smart thermostats and appliances, syncrophasors, automated substations, plug in hybrid electric vehicles, renewable energy sources, etc.
  • Building a Smart Grid Manufacturing Industry — $25 million. These investments will help expand our manufacturing base of companies that can produce the smart meters, smart appliances, synchrophasors, smart transformers, and other components for smart grid systems in the United States and around the world – representing a significant and growing export opportunity for our country and new jobs for American workers.

More details on the proposed projects are available here. Click here for the full test of remarks by President Obama on Recovery Act Funding for Smart Grid Technology.

Read Full Post »

PODESTA, GORDON, HENDRICKS & GOLDSTEIN, Center for American Progress, September 21, 2009

ctr-4-american-progressWith unemployment at 9.5%, and oil and energy price volatility driving businesses into the ground, we cannot afford to wait any longer. It is time for a legislative debate over a comprehensive clean energy investment plan. We need far more than cap and trade alone.

The United States is having the wrong public debate about global warming. We are asking important questions about pollution caps and timetables, carbon markets and allocations, but we have lost sight of our principal objective: building a robust and prosperous clean energy economy. This is a fundamentally affirmative agenda, rather than a restrictive one. Moving beyond pollution from fossil fuels will involve exciting work, new opportunities, new products and innovation, and stronger communities. Our current national discussion about constraints, limits, and the costs of transition misses the real excitement in this proposition. It is as if, on the cusp of an Internet and telecommunications revolution, debate centered only on the cost of fiber optic cable. We are missing the big picture here.

Let’s be clear: Solving global warming means investment. Retooling the energy systems that fuel our economy will involve rebuilding our nation’s infrastructure. We will create millions of middle-class jobs along the way, revitalize our manufacturing sector, increase American competitiveness, reduce our dependence on oil, and boost technological innovation. These investments in the foundation of our economy can also provide an opportunity for more broadly shared prosperity through better training, stronger local economies, and new career ladders into the middle class. Reducing greenhouse gas pollution is critical to solving global warming, but it is only one part of the work ahead. Building a robust economy that grows more vibrant as we move beyond the Carbon Age is the greater and more inspiring challenge.

Reducing greenhouse gas emissions to avert dangerous global warming is a moral challenge, but it is also an economic, national security, social, and environmental imperative. The “cap and trade” provisions, which will set limits on pollution and create a market for emissions reductions that will ultimately drive down the cost of renewable energy and fuel, represent a very important first step and a major component in the mix of policies that will help build the coming low-carbon economy. But limiting emissions and establishing a price on pollution is not the goal in itself, and we will fall short if that is all we set out to do. Rather, cap and trade is one key step to reach the broader goal of catalyzing the transformation to an efficient and sustainable low-carbon economy. With unemployment at 9.5%, and oil and energy price volatility driving businesses into the ground, we cannot afford to wait any longer. It is time for a legislative debate over a comprehensive clean energy investment plan. We need far more than cap and trade alone.

This is not just an exercise in rhetoric. Articulating and elevating a comprehensive plan to invest in clean energy systems and more efficient energy use will affect policy development and the politics surrounding legislation now moving through the Senate, as well as international negotiations underway around the globe. The current debate, which splits the issue into the two buckets of “cap and trade” and “complementary policies,” has missed the comprehensive nature of the challenge and its solutions. It also emphasizes the challenge of pollution control instead of organizing policy for increased development, market growth, reinvestment in infrastructure, and job creation through the transition to a more prosperous, clean energy economy.

This paper lays out the framework for just such an investment-driven energy policy, the pieces of which work together to level the playing field for clean energy and drive a transformation of the economy. Importantly, many elements of this positive clean-energy investment framework are already codified within existing legislation such as the American Clean Energy and Security Act, passed by House of Representatives earlier this year. But with all the attention given to limiting carbon, too little attention has been placed on what will replace it. These critical pieces of America’s clean energy strategy should be elevated in the policy agenda and political debate as we move forward into the Senate, and used to help move legislation forward that advances a proactive investment and economic revitalization strategy for the nation.

Read the full report here.

Read Full Post »

MendoCoastCurrent, September 21, 2009

wave-ocean-blue-sea-water-white-foam-photoThe U.S. Department of Energy recently announced that it is providing $14.6 million in funding for 22 water power projects to move forward in the commercial viability, market acceptance and environmental performance of new marine and hydrokinetic technologies as well as conventional hydropower plants.

The selected projects will further the nation’s supply of domestic clean hydroelectricity through technological innovation to capitalize on new sources of energy, and will advance markets and research to maximize the nation’s largest renewable energy source.

“Hydropower provides our nation with emissions-free, sustainable energy.  By improving hydropower technology, we can maximize what is already our biggest source of renewable energy in an environmentally responsible way.  These projects will provide critical support for the development of innovative renewable water power technologies and help ensure a vibrant hydropower industry for years to come,” said Secretary Chu.

Recipients include the Electric Power Research Institute (EPRI) in Palo Alto, California, receiving $1.5 million, $500,000 and $600,000 for three projects with the Hydro Research Foundation in Washington, DC, receiving to $1 million.

According to the Dept. of Energy, selected projects address five topic areas:

  • Hydropower Grid Services – Selection has been made for a project that develops new methods to quantify and maximize the benefits that conventional hydropower and pumped storage hydropower provide to transmission grids.
  • University Hydropower Research Program – Selected projects will be for organizations to establish and manage a competitive fellowship program to support graduate students and faculty members engaged in work directly relevant to conventional hydropower or pumped storage hydropower.
  • Marine & Hydrokinetic Energy Conversion Device or Component Design and Development – Selections are for industry-led partnerships to design, model, develop, refine, or test a marine and hydrokinetic energy conversion device, at full or subscale, or a component of such a device.
  • Marine and Hydrokinetic Site-specific Environmental Studies – Selected projects are for industry-led teams to perform environmental studies related to the installation, testing, or operation of a marine and hydrokinetic energy conversion device at an open water project site.
  • Advanced Ocean Energy Market Acceleration Analysis and Assessments – Selections are for a number of energy resource assessments across a number of marine and hydrokinetic resources, as well as life-cycle cost analyses for wave, current and ocean thermal energy conversion technologies.

For a complete list of the the funded projects, go here.

Read Full Post »

Older Posts »