Feeds:
Posts
Comments

Posts Tagged ‘Aquamarine Power’

The Engineer UK, July 6 2010

Aquamarine Power and AWS Ocean Energy today secured approximately £4.39m to continue development of their wave energy devices.

The WATERS fund (Wave and Tidal Energy: Research, Development and Demonstration Support) has provided Aquamarine Power with more than £3m to develop its 2.4MW Oyster demonstration project in Scotland while AWS Ocean Energy received £1.39m to develop its AWS-III surface-floating wave power device.

Phased installation of the Oyster 2 project will begin at the European Marine Energy Centre (EMEC) in Orkney in Summer 2011. In-depth coverage of Oyster from The Engineer’s 2009 Awards Supplement can be read here.

The Oyster demonstration project will consist of three 800kW hinged flaps, each measuring 26m by 16m. The flaps are moved by the motion of near shore waves, which in turn drive two hydraulic pistons that push high-pressure water onshore to drive a conventional hydro-electric turbine.

Oyster 2 Wave Energy Converter

Aquamarine Power claims each flap will deliver 250 per cent more power than the original Oyster prototype, which was successfully deployed at EMEC in 2009.

The three devices will be linked to a single onshore 2.4MW hydro-electric turbine. The new devices incorporate modifications that are expected to facilitate the production of more energy, be simpler to install and easier to maintain.

AWS Ocean Energy will use its funding to further develop the AWS-III device, a ring-shaped, multi-cell, surface-floating wave power system.

It is claimed that a single utility-scale AWS-III, measuring around 60m in diameter, will be capable of generating up to 2.5MW of continuous power.

Scale testing of the AWS-III on Loch Ness is currently being carried out to provide design data and confirm the AWS-III’s commercial potential.

The £15m WATERS scheme, which is run and administered by Scottish Enterprise, has been designed to support the construction and installation of pre-commercial full-scale wave and tidal stream device prototypes in Scottish waters.

Read Full Post »

GAYATHRI VAIDYANATHAN, New York Times, March 2, 2010

Harnessing the ocean waves for emission-free power seems like a tidy concept, but the ocean is anything but tidy. Waves crash from multiple directions on a seemingly random basis, and converting the kinetic energy into electricity is a frontier of alternative energy research that requires grappling with large unknowns.

But with several utility companies and states, and in one case, the U.S. Navy, investing in wave power, or hydrokinetic energy, may not be too far off in the utility mix. At least two companies hope to reach commercial deployments within the next three to five years.

Off the coast of Orkney, Scotland, is the Oyster, a white- and yellow-flapped cylinder, 40 feet tall and firmly locked into the ocean’s bed. With a total of seven moving parts, two of which are pistons, it captures waves as they near the coast. Oyster funnels them into a pipe and carries the power inland to a hydroelectric power generator. The generator has been supplying the United Kingdom’s grid with 315 kilowatts of energy at peak power since October.

A farm of up to 100 Oysters could yield 100 megawatts, according to Aquamarine Power, the Scottish company that developed the technology.

“From an environmental perspective, in the sea you have a very simple machine that uses no oil, no chemicals, no electromagnetic radiation,” said Martin McAdam, CEO of Aquamarine.

The Oyster provides a tiny fraction of the 250 gigawatts of power that the water is capable of providing, including conventional hydroelectric energy by 2030, according to the United Nations. At least 25 gigawatts of that will come from marine renewables, according to Pike Research, a clean technology market research group. The non-conservative estimate is as much as 200 gigawatts. And 2015 will be the benchmark year to determine which of these estimates will be true.

The field of hydrokinetic power has a number of companies such as Aquamarine, all with unique designs and funded by utility companies, government grants and venture capitalists. If at least 50% of these projects come online by 2015, marine power could supply 2.7 gigawatts to the mix, according to Pike Research. A gigawatt is the electrical output of a large nuclear power plant.

‘PowerBuoy’ joins the Marines

There are six marine renewable technologies currently under development that aim to take advantage of ocean waves, tides, rivers, ocean currents, differences in ocean temperatures with depth, and osmosis.

“The energy landscape is going to be a mix of different energy sources, with an increasing proportion coming from renewables,” said Charles Dunleavy, CEO of Ocean Power Technologies, a New Jersey-based research group also developing wave energy. “We aim to be a very big part of this.”

The company has been testing its wave energy device, called the PowerBuoy, in the ocean since 2005. It recently launched another device a mile offshore from the island of Oahu in Hawaii and connected it to the power grid of the U.S. Marine Corps base. It now supplies 40 kilowatts of energy at peak, enough to power about 25 to 30 homes.

“The Navy wants to reduce its reliance on imported fossil fuel; they have a strong need to establish greater energy independence,” said Dunleavy.

The buoy captures the energy from right-sized waves (between 3 and 22 feet tall), which drive a hydraulic pump. The pump converts the motion into electricity in the ocean using a generator embedded into its base. A subsea cable transfers the power to the electrical grid. A buoy farm of 30 acres could yield 10 megawatts of energy, enough to supply 8,000 homes, said Dunleavy.

The structures rise 30 feet above water, and extend 115 feet down. They would not be a problem for commercial trawlers, which are farther offshore, or for ship navigation lanes, said Dunleavy. Recreational boaters, however, may have to watch out.

‘Oyster’ competes with the ‘top end of wind’

In comparison with a system such as the Oyster that brings water ashore to power turbines, creating electricity in the ocean is more efficient, said Dunleavy. “You lose a lot of energy to friction,” he said.

But Aquamarine’s system of having onshore power generation will cut down on maintenance costs, according to McAdam. Operation costs are expected to consume as much as 40% of the budget of operating a marine power plant, according to Pike Research.

Ocean Power is already selling its device for individual commercial use and building larger units of 150 kilowatts off the West Coast of the United States and for the utility company Iberdrola’s unit in Spain.

It is also developing the first wave power station under the Department of Energy’s stimulus program at Reedsport, Ore., according to Dunleavy. The farm, which currently has a 150-kilowatt unit, could grow by nine additional buoys.

And as for price, which is a major concern, Dunleavy said that cost compares with other renewables.

“It is cheaper than solar thermal and photovoltaics, and in the range of biomass,” he said. “It is at the top end of wind.”

The Oyster is also aiming to position itself as an alternative to wind power for utilities. McAdam said that by 2013, his company hopes to be a competitor to offshore wind installations. And by 2015, he hopes to compete with onshore wind.

Read Full Post »

MendoCoastCurrent, October 30, 2009

oyster_prototype_device_aquamarine_powerJust last week in Scotland the Oyster from Aquamarine Power passed a crucial test and is no longer in locked-down position on the seabed. Now the Oyster moves back and forth in the ocean waves, pumping high-pressure water to its onshore hydro-electric turbine as it readies for full-commissioning.

The Oyster captures energy found in near-shore waves up to depths of 10 to 12 metres and consists of a hinged flap connected to the seabed at around 10m depth. Each passing wave moves the flap which drives a hydraulic piston to deliver high-pressure water to an onshore turbine which generates electricity. The Oyster now goes through commissioning in advance of grid connection as the official switch on by Scotland’s First Minister Alex Salmond is set for on November 20, 2009.

Martin McAdam, Aquamarine Power chief executive said: “We are delighted to have passed this crucial stage in commissioning the world’s very first Oyster wave energy convertor. This major milestone shows that the Oyster does what we have always believed it will do, and we look forward to completing commissioning and producing clean, green energy from Scotland’s waves in the coming months.”

Read Full Post »

Hydro Review, August 18, 2009

aquamarine-power_fb8xa_69Off the north coast of Scotland in waters 10 to 12 meters deep, ocean energy developer Aquamarine Power Ltd. has bolted its Oyster wave energy converter to the ocean floor and expects to be generating power by year’s end.

A team of offshore professionals eased the 194-ton converter into the sea at the European Marine Energy Center in the Orkney Islands. “Getting Oyster into the water and connected to the seabed was always going to be the most difficult step,” said Aquamarine CEO Martin McAdam. “Its completion is a real credit to everyone who has worked hard on planning and executing this major engineering feat on schedule.”

The Oyster is designed to capture energy from near-shore waves. The system includes an oscillating pump fitted with double-acting water pistons. Each wave activates the pump, delivering high-pressure water by pipeline to an onshore turbine that generates electricity. All electrical components of the Oyster are onshore, making it durable enough to withstand Scotland’s rough seas, McAdam said.

Marine constructor Fugro Seacore installed the Oyster converter under a $2.9 million contract.

Read Full Post »

MendoCoastCurrent, August 4, 2009

oyster_prototype_device_aquamarine_powerOyster nearshore wave energy technology from Aquamarine Power is in the process of being placed on the seabed in the Atlantic off the coast of the Orkney Islands, Scotland for trials in autumn 2009.

The Oyster is based on a large, hydraulic oscillator fitted with pistons and activated by waves.  The oscillation pumps pressurized water through a pipeline to the shore.  Onshore, conventional hydro-electric generators convert the high-pressure water into electricity.

The concept is based on research from Queen’s University in Belfast. “Oyster’s technology is highly innovative because it relies on simplicity,” says Ronan Doherty, CTO at Aquamarine Power.

“Its offshore component – a highly reliable flap with minimal submerged moving parts – is the key to its success when operating in seas vulnerable to bad weather where maintenance can be very difficult.”  Doherty adds that as there is no underwater generator, electronics or gearbox and all the power generation equipment in onshore, where it is easily accessible.

Oyster technology is best deployed in near-shore regions at depths of 26-52 feet, where wave action tends to be more consistent and less variable in direction. The smaller size of waves near the shore also maximizes the lifetime of the device and the consistency of power generation. Each Oyster has a peak capacity of 300-600 kW but is designed to be deployed in multiple arrays.

Although still in the early stages of development, Aquamarine Power believes Oyster has great potential. “Our computer modeling of coastlines suitable for this technology shows that Spain, Portugal, Ireland and the UK are ideal candidates in Europe,” says Doherty. “But globally there is huge scope in areas like the Northwest coast of the U.S. and coastlines off South Africa, Australia and Chile.”

Read Full Post »

MendoCoastCurrent, March 25, 2009

aquamarine-power_fb8xa_69

Aquamarine Power has signed a $2.7 million contract with Fugro Seacore to install their wave energy generator, the Oyster, at the European Marine Energy Center.

Aquamarine’s Oyster converter is designed for waters that are from 26-52 feet deep with anticipated installation 550 yards offshore in the second half of 2009.  The Oyster has a wave action pump sending pressured water in a pipeline to an electricity generator.

The generator, to be built in Orkney, Scotland, is expected to produce between 300 and 600 kilowatts for Scotland’s national grid.

The contract is part of the Scottish government’s goal to derive 50% its electricity from renewable energy sources by 2020.

Read Full Post »

EMMA JACKSON, UniversityWorldNews, March 15, 2009

aquamarine-power_fb8xa_69A research team at Queen’s University Belfast in Northern Ireland has renewed a relationship with Aquamarine Power, a leading marine technology energy company. Together they may create the next generation of wave power converters that could some day be an alternative source of power for European maritime states. 

This five-year deal will focus on perfecting a so-called ‘Oyster’ wave power device which the university’s Wave Power Research Team and Aquamarine Power created between 2005 and 2008. 

Professor Trevor Whittaker, who leads the research team at Queen’s, says the next generation of Oyster would be the precursor to a commercially -viable model that could produce alternative power for much of the UK with its long coastline. 

The Oyster device is designed to capture the energy found in near-shore waves, which is then sent to a seaside converter to be made into hydroelectric power. 

Whittaker said the deal would be indispensable for both partners. While Aquamarine Power would have the benefit of using some of the field”s leading experts and their research, the university would benefit from financial support and hands-on experience for its PhD students.

Whittaker said the team from Aquamarine would rent the university’s state-of-the-art wave tanks to test several models, creating income for the university. Aquamarine also agreed to provide funding for two full-time staff members at the research facility: a senior research fellow, and a technician. 

He said the programme’s PhD students would be able to see their research, their academic work, being used for something. “When they write their theses, they don’t just sit on a shelf. We’re doing applied research that is benefiting humanity directly.”

The team will monitor survivability and watch how the devices interact with each other to guarantee continuous power output in all sea states. Whittaker said commercial wave power was still “in its infancy,” but Oyster Two, which would form the basis of any commercial model, would be ready by 2011.

Its predecessor, Oyster One, will be launched at sea for testing this summer at the European Marine Energy Centre off the coast of north-east Scotland’s Orkney Isles. 

Dr Ronan Doherty, Aquamarine’s Chief Technical Officer, said the UK Carbon Trust had estimated that up to 20% of current UK electricity demand could be met by wave and tidal stream energy, with the majority being in coastal communities.

“World leading facilities and researchers at Queen’s enable Aquamarine Power to not only peruse the industrial design of our products in a detailed way, but it is also the source of constant innovation and challenge resulting from their blue sky thinking and fundamental research,” Doherty said.

Read Full Post »

The Economist, June 5, 2008

You only have to look at waves pounding a beach, inexorably wearing cliffs into rubble and pounding stones into sand, to appreciate the power of the ocean. As soaring oil prices and concern over climate change give added urgency to the search for new, renewable sources of energy, the sea is an obvious place to look. In theory the world’s electricity needs could be met with just a tiny fraction of the energy sloshing around in the oceans.

Alas, harnessing it has proved to be unexpectedly difficult. In recent years wind farms have sprouted on plains and hilltops, and solar panels have been sprinkled across rooftops and deserts. But where the technology of wind and solar power is established and steadily improving, that of wave power is still in its infancy. The world had to wait until October 2007 for the first commercial wave farm, consisting of three snakelike tubes undulating with the Atlantic swell off the coast of Portugal.

In December Pacific Gas & Electric, an American utility, signed an agreement to buy electricity from a wave farm that is to be built off the coast of California and is due to open in 2012. Across the world many other wave-power schemes are on the drawing board. The story of wave power, however, has been one of trials and tests followed by disappointment and delays. Of the many devices developed to capture wave energy, none has ever been deployed on a large scale. Given wave power’s potential, why has it been so hard to get the technology to work—and may things now be about to change?

The first patents for wave-power devices were issued in the 18th century. But nothing much happened until the mid-1970s, when the oil crisis inspired Stephen Salter, an engineer at the University of Edinburgh, in Scotland, to develop a wave generator known as Salter’s Duck. His design contained curved, floating canisters, each the size of a house, that would be strung together and then tethered to the ocean floor. As the canisters, known as Ducks, were tossed about by the waves, each one would rock back and forth. Hydraulics would convert the rocking motion to rotational motion, which would in turn drive a generator. A single Duck was calculated to be capable of generating 6 megawatts (MW) of electricity—enough to power around 4,000 homes. The plan was to install them in groups of several dozen.

Initial estimates put the cost of generating electricity in this way at nearly $1 per kilowatt hour (kWh), far more than nuclear power, the most expensive electricity at the time. But as Dr Salter and his team improved their design, they managed to bring the cost-per-kWh down to the cost of nuclear power. Even so, the research programme was shut down by the British government in 1982. The reasons for this were not made public, but it is widely believed to have happened after lobbying by the nuclear industry. In testimony to a House of Lords committee in 1988, Dr Salter said that an accurate evaluation of the potential of new energy sources would be possible only when “the control of renewable energy projects is completely removed from nuclear influences.”

Salter’s Duck never took to the seas, but it sparked interest in the idea of wave power and eventually helped to inspire other designs. One example is the Pelamis device, designed by some of Dr Salter’s former students, who now work at Pelamis Wave Power, a firm based in Scotland. Three such devices, each capable of generating up to 750kW, have been deployed off the coast of Portugal, and dozens more are due to be installed by 2009. There are also plans for installations off Orkney in Scotland and Cornwall in England.

As waves travel along the 140-metre length of the snakelike Pelamis, its hinged joints bend both up and down, and from side to side. This causes hydraulic rams at the joints to pump hydraulic fluid through turbines, turning generators to produce electricity. Pelamis generators present only a small cross-section to incoming waves, and absorb less and less energy as the waves get bigger. This might seem odd, but most of the time the devices will not be operating in stormy seas—and when a storm does occur, their survival is more important than their power output.

Oh Buoy

The Aquabuoy, designed by Finavera Renewables of Vancouver, takes a different approach. (This is the device that Pacific Gas & Electric hopes to deploy off the California coast.) Each Aquabuoy is a tube, 25-metres long, that floats vertically in the water and is tethered to the sea floor. Its up-and-down bobbing motion is used to pressurise water stored in the tube below the surface. Once the pressure reaches a certain level, the water is released, spinning a turbine and generating electricity.

The design is deliberately simple, with few moving parts. In theory, at least, there is very little to go wrong. But a prototype device failed last year when it sprang a leak and its bilge-pump malfunctioned, causing it to sink just as it was due to be collected at the end of a trial. Finavera has not released the results of the trial, which was intended to measure the Aquabuoy’s power output, among other things. The company has said, however, that Aquabuoy will be profitable only if each device can generate at least 250kW, and that it has yet to reach this threshold.

Similar bobbing buoys are also being worked on by AWS Ocean Energy, based in Scotland, and Ocean Power Technologies, based in Pennington, New Jersey, among others. The AWS design is unusual because the buoys are entirely submerged; the Ocean Power device, called the PowerBuoy, is being tested off the coast of Spain by Iberdrola, a Spanish utility.

The Oyster, a wave-power device from Aquamarine Power, another Scottish firm, works in an entirely different way. It is an oscillating metal flap, 12 metres tall and 18 metres wide, installed close to shore. As the waves roll over it, the flap flexes backwards and forwards. This motion drives pistons that pump seawater at high pressure through a pipe to a hydroelectric generator. The generator is onshore, and can be connected to lots of Oyster devices, each of which is expected to generate up to 600kW. The idea is to make the parts that go in the sea simple and robust, and to keep the complicated and delicate bits out of the water. Testing of a prototype off the Orkney coast is due to start this summer.

The logical conclusion of this is to put everything onshore—and that is the idea behind the Limpet. It is the work of Wavegen, a Scottish firm which is a subsidiary of Voith Siemens Hydro, a German hydropower firm. A prototype has been in action on the island of Islay, off the Scottish coast, since 2000. The Limpet is a chamber that sits on the shoreline. The bottom of the chamber is open to the sea, and on top is a turbine that always spins in the same direction, regardless of the direction of the airflow through it.

As waves slam into the shore, water is pushed into the chamber and this in turn displaces the air, driving it through the turbine. As the water recedes, air is sucked back into the chamber, driving the same turbine again. The Limpet on Islay has three chambers which generate an average of 100kW between them, but larger devices could potentially generate three times this amount, according to Wavegen. Limpets may be built into harbour breakwaters in Scotland and Spain.

Dozens of wave-energy technologies are being developed around the world: ideas, in other words, are not what has held the field back. So what has? Tom Thorpe of Oxford Oceanics, a consultancy, blames several overlapping causes. For a start, wave energy has lagged behind wind and solar, because the technology is much younger and still faces some big technical obstacles. “This is a completely new energy technology, whereas wind and photovoltaics have been around for a long time—so they have been developed, rather than invented,” says Mr Thorpe.

The British government’s decision to shut its wave-energy research programme, which had been the world’s biggest during the 1970s, set the field back nearly two decades. Since Britain is particularly well placed to exploit wave energy (which is why so many wave-energy companies come from there), its decision not to pursue the technology affected wave-energy research everywhere, says Mr Thorpe. “If we couldn’t do it, who could?” he says.

Once interest in wave power revived earlier this decade, practical problems arose. A recurring problem, ironically enough, is that new devices underestimate the power of the sea, and are unable to withstand its assault. Installing wave-energy devices is also expensive; special vessels are needed to tow equipment out to sea, and it can be difficult to get hold of them. “Vessels that could potentially do the job are all booked up by companies collecting offshore oil,” says Trevor Whittaker, an engineer at Queen’s University in Belfast who has been part of both the Limpet and Oyster projects. “Wave-generator installation is forced to compete with the high prices the oil industry can pay.”

Another practical problem is the lack of infrastructure to connect wave-energy generators to the power grid. The cost of establishing this infrastructure makes small-scale wave-energy generation and testing unfeasible; but large-scale projects are hugely expensive. One way around this is to build a “Wave Hub”, like the one due to be installed off the coast of Cornwall in 2010 that will provide infrastructure to connect up wave-energy arrays for testing.

Expect Flotations

But at last there are signs of change. Big utilities are taking the technology seriously, and are teaming up with wave-energy companies. Venture-capitalists are piling in too, as they look for new opportunities. Several wave-energy companies are thought to be planning stockmarket flotations in the coming months. Indeed, such is investors’ enthusiasm that Mr Thorpe worries that things might have gone too far. A big failure could tarnish the whole field, just as its prospects look more promising than ever.

Whether one wave-energy device will dominate, or different devices will suit different conditions, remains to be seen. But wave energy’s fortunes have changed. “We have to be prepared for some spectacular failures,” says Mr Thorpe, “but equally some spectacular successes.”

Read Full Post »