Feeds:
Posts
Comments

Posts Tagged ‘Aquamarine Power’

The Engineer UK, July 6 2010

Aquamarine Power and AWS Ocean Energy today secured approximately £4.39m to continue development of their wave energy devices.

The WATERS fund (Wave and Tidal Energy: Research, Development and Demonstration Support) has provided Aquamarine Power with more than £3m to develop its 2.4MW Oyster demonstration project in Scotland while AWS Ocean Energy received £1.39m to develop its AWS-III surface-floating wave power device.

Phased installation of the Oyster 2 project will begin at the European Marine Energy Centre (EMEC) in Orkney in Summer 2011. In-depth coverage of Oyster from The Engineer’s 2009 Awards Supplement can be read here.

The Oyster demonstration project will consist of three 800kW hinged flaps, each measuring 26m by 16m. The flaps are moved by the motion of near shore waves, which in turn drive two hydraulic pistons that push high-pressure water onshore to drive a conventional hydro-electric turbine.

Oyster 2 Wave Energy Converter

Aquamarine Power claims each flap will deliver 250 per cent more power than the original Oyster prototype, which was successfully deployed at EMEC in 2009.

The three devices will be linked to a single onshore 2.4MW hydro-electric turbine. The new devices incorporate modifications that are expected to facilitate the production of more energy, be simpler to install and easier to maintain.

AWS Ocean Energy will use its funding to further develop the AWS-III device, a ring-shaped, multi-cell, surface-floating wave power system.

It is claimed that a single utility-scale AWS-III, measuring around 60m in diameter, will be capable of generating up to 2.5MW of continuous power.

Scale testing of the AWS-III on Loch Ness is currently being carried out to provide design data and confirm the AWS-III’s commercial potential.

The £15m WATERS scheme, which is run and administered by Scottish Enterprise, has been designed to support the construction and installation of pre-commercial full-scale wave and tidal stream device prototypes in Scottish waters.

Advertisements

Read Full Post »

GAYATHRI VAIDYANATHAN, New York Times, March 2, 2010

Harnessing the ocean waves for emission-free power seems like a tidy concept, but the ocean is anything but tidy. Waves crash from multiple directions on a seemingly random basis, and converting the kinetic energy into electricity is a frontier of alternative energy research that requires grappling with large unknowns.

But with several utility companies and states, and in one case, the U.S. Navy, investing in wave power, or hydrokinetic energy, may not be too far off in the utility mix. At least two companies hope to reach commercial deployments within the next three to five years.

Off the coast of Orkney, Scotland, is the Oyster, a white- and yellow-flapped cylinder, 40 feet tall and firmly locked into the ocean’s bed. With a total of seven moving parts, two of which are pistons, it captures waves as they near the coast. Oyster funnels them into a pipe and carries the power inland to a hydroelectric power generator. The generator has been supplying the United Kingdom’s grid with 315 kilowatts of energy at peak power since October.

A farm of up to 100 Oysters could yield 100 megawatts, according to Aquamarine Power, the Scottish company that developed the technology.

“From an environmental perspective, in the sea you have a very simple machine that uses no oil, no chemicals, no electromagnetic radiation,” said Martin McAdam, CEO of Aquamarine.

The Oyster provides a tiny fraction of the 250 gigawatts of power that the water is capable of providing, including conventional hydroelectric energy by 2030, according to the United Nations. At least 25 gigawatts of that will come from marine renewables, according to Pike Research, a clean technology market research group. The non-conservative estimate is as much as 200 gigawatts. And 2015 will be the benchmark year to determine which of these estimates will be true.

The field of hydrokinetic power has a number of companies such as Aquamarine, all with unique designs and funded by utility companies, government grants and venture capitalists. If at least 50% of these projects come online by 2015, marine power could supply 2.7 gigawatts to the mix, according to Pike Research. A gigawatt is the electrical output of a large nuclear power plant.

‘PowerBuoy’ joins the Marines

There are six marine renewable technologies currently under development that aim to take advantage of ocean waves, tides, rivers, ocean currents, differences in ocean temperatures with depth, and osmosis.

“The energy landscape is going to be a mix of different energy sources, with an increasing proportion coming from renewables,” said Charles Dunleavy, CEO of Ocean Power Technologies, a New Jersey-based research group also developing wave energy. “We aim to be a very big part of this.”

The company has been testing its wave energy device, called the PowerBuoy, in the ocean since 2005. It recently launched another device a mile offshore from the island of Oahu in Hawaii and connected it to the power grid of the U.S. Marine Corps base. It now supplies 40 kilowatts of energy at peak, enough to power about 25 to 30 homes.

“The Navy wants to reduce its reliance on imported fossil fuel; they have a strong need to establish greater energy independence,” said Dunleavy.

The buoy captures the energy from right-sized waves (between 3 and 22 feet tall), which drive a hydraulic pump. The pump converts the motion into electricity in the ocean using a generator embedded into its base. A subsea cable transfers the power to the electrical grid. A buoy farm of 30 acres could yield 10 megawatts of energy, enough to supply 8,000 homes, said Dunleavy.

The structures rise 30 feet above water, and extend 115 feet down. They would not be a problem for commercial trawlers, which are farther offshore, or for ship navigation lanes, said Dunleavy. Recreational boaters, however, may have to watch out.

‘Oyster’ competes with the ‘top end of wind’

In comparison with a system such as the Oyster that brings water ashore to power turbines, creating electricity in the ocean is more efficient, said Dunleavy. “You lose a lot of energy to friction,” he said.

But Aquamarine’s system of having onshore power generation will cut down on maintenance costs, according to McAdam. Operation costs are expected to consume as much as 40% of the budget of operating a marine power plant, according to Pike Research.

Ocean Power is already selling its device for individual commercial use and building larger units of 150 kilowatts off the West Coast of the United States and for the utility company Iberdrola’s unit in Spain.

It is also developing the first wave power station under the Department of Energy’s stimulus program at Reedsport, Ore., according to Dunleavy. The farm, which currently has a 150-kilowatt unit, could grow by nine additional buoys.

And as for price, which is a major concern, Dunleavy said that cost compares with other renewables.

“It is cheaper than solar thermal and photovoltaics, and in the range of biomass,” he said. “It is at the top end of wind.”

The Oyster is also aiming to position itself as an alternative to wind power for utilities. McAdam said that by 2013, his company hopes to be a competitor to offshore wind installations. And by 2015, he hopes to compete with onshore wind.

Read Full Post »

MendoCoastCurrent, October 30, 2009

oyster_prototype_device_aquamarine_powerJust last week in Scotland the Oyster from Aquamarine Power passed a crucial test and is no longer in locked-down position on the seabed. Now the Oyster moves back and forth in the ocean waves, pumping high-pressure water to its onshore hydro-electric turbine as it readies for full-commissioning.

The Oyster captures energy found in near-shore waves up to depths of 10 to 12 metres and consists of a hinged flap connected to the seabed at around 10m depth. Each passing wave moves the flap which drives a hydraulic piston to deliver high-pressure water to an onshore turbine which generates electricity. The Oyster now goes through commissioning in advance of grid connection as the official switch on by Scotland’s First Minister Alex Salmond is set for on November 20, 2009.

Martin McAdam, Aquamarine Power chief executive said: “We are delighted to have passed this crucial stage in commissioning the world’s very first Oyster wave energy convertor. This major milestone shows that the Oyster does what we have always believed it will do, and we look forward to completing commissioning and producing clean, green energy from Scotland’s waves in the coming months.”

Read Full Post »

Hydro Review, August 18, 2009

aquamarine-power_fb8xa_69Off the north coast of Scotland in waters 10 to 12 meters deep, ocean energy developer Aquamarine Power Ltd. has bolted its Oyster wave energy converter to the ocean floor and expects to be generating power by year’s end.

A team of offshore professionals eased the 194-ton converter into the sea at the European Marine Energy Center in the Orkney Islands. “Getting Oyster into the water and connected to the seabed was always going to be the most difficult step,” said Aquamarine CEO Martin McAdam. “Its completion is a real credit to everyone who has worked hard on planning and executing this major engineering feat on schedule.”

The Oyster is designed to capture energy from near-shore waves. The system includes an oscillating pump fitted with double-acting water pistons. Each wave activates the pump, delivering high-pressure water by pipeline to an onshore turbine that generates electricity. All electrical components of the Oyster are onshore, making it durable enough to withstand Scotland’s rough seas, McAdam said.

Marine constructor Fugro Seacore installed the Oyster converter under a $2.9 million contract.

Read Full Post »

MendoCoastCurrent, August 4, 2009

oyster_prototype_device_aquamarine_powerOyster nearshore wave energy technology from Aquamarine Power is in the process of being placed on the seabed in the Atlantic off the coast of the Orkney Islands, Scotland for trials in autumn 2009.

The Oyster is based on a large, hydraulic oscillator fitted with pistons and activated by waves.  The oscillation pumps pressurized water through a pipeline to the shore.  Onshore, conventional hydro-electric generators convert the high-pressure water into electricity.

The concept is based on research from Queen’s University in Belfast. “Oyster’s technology is highly innovative because it relies on simplicity,” says Ronan Doherty, CTO at Aquamarine Power.

“Its offshore component – a highly reliable flap with minimal submerged moving parts – is the key to its success when operating in seas vulnerable to bad weather where maintenance can be very difficult.”  Doherty adds that as there is no underwater generator, electronics or gearbox and all the power generation equipment in onshore, where it is easily accessible.

Oyster technology is best deployed in near-shore regions at depths of 26-52 feet, where wave action tends to be more consistent and less variable in direction. The smaller size of waves near the shore also maximizes the lifetime of the device and the consistency of power generation. Each Oyster has a peak capacity of 300-600 kW but is designed to be deployed in multiple arrays.

Although still in the early stages of development, Aquamarine Power believes Oyster has great potential. “Our computer modeling of coastlines suitable for this technology shows that Spain, Portugal, Ireland and the UK are ideal candidates in Europe,” says Doherty. “But globally there is huge scope in areas like the Northwest coast of the U.S. and coastlines off South Africa, Australia and Chile.”

Read Full Post »

MendoCoastCurrent, March 25, 2009

aquamarine-power_fb8xa_69

Aquamarine Power has signed a $2.7 million contract with Fugro Seacore to install their wave energy generator, the Oyster, at the European Marine Energy Center.

Aquamarine’s Oyster converter is designed for waters that are from 26-52 feet deep with anticipated installation 550 yards offshore in the second half of 2009.  The Oyster has a wave action pump sending pressured water in a pipeline to an electricity generator.

The generator, to be built in Orkney, Scotland, is expected to produce between 300 and 600 kilowatts for Scotland’s national grid.

The contract is part of the Scottish government’s goal to derive 50% its electricity from renewable energy sources by 2020.

Read Full Post »

EMMA JACKSON, UniversityWorldNews, March 15, 2009

aquamarine-power_fb8xa_69A research team at Queen’s University Belfast in Northern Ireland has renewed a relationship with Aquamarine Power, a leading marine technology energy company. Together they may create the next generation of wave power converters that could some day be an alternative source of power for European maritime states. 

This five-year deal will focus on perfecting a so-called ‘Oyster’ wave power device which the university’s Wave Power Research Team and Aquamarine Power created between 2005 and 2008. 

Professor Trevor Whittaker, who leads the research team at Queen’s, says the next generation of Oyster would be the precursor to a commercially -viable model that could produce alternative power for much of the UK with its long coastline. 

The Oyster device is designed to capture the energy found in near-shore waves, which is then sent to a seaside converter to be made into hydroelectric power. 

Whittaker said the deal would be indispensable for both partners. While Aquamarine Power would have the benefit of using some of the field”s leading experts and their research, the university would benefit from financial support and hands-on experience for its PhD students.

Whittaker said the team from Aquamarine would rent the university’s state-of-the-art wave tanks to test several models, creating income for the university. Aquamarine also agreed to provide funding for two full-time staff members at the research facility: a senior research fellow, and a technician. 

He said the programme’s PhD students would be able to see their research, their academic work, being used for something. “When they write their theses, they don’t just sit on a shelf. We’re doing applied research that is benefiting humanity directly.”

The team will monitor survivability and watch how the devices interact with each other to guarantee continuous power output in all sea states. Whittaker said commercial wave power was still “in its infancy,” but Oyster Two, which would form the basis of any commercial model, would be ready by 2011.

Its predecessor, Oyster One, will be launched at sea for testing this summer at the European Marine Energy Centre off the coast of north-east Scotland’s Orkney Isles. 

Dr Ronan Doherty, Aquamarine’s Chief Technical Officer, said the UK Carbon Trust had estimated that up to 20% of current UK electricity demand could be met by wave and tidal stream energy, with the majority being in coastal communities.

“World leading facilities and researchers at Queen’s enable Aquamarine Power to not only peruse the industrial design of our products in a detailed way, but it is also the source of constant innovation and challenge resulting from their blue sky thinking and fundamental research,” Doherty said.

Read Full Post »

Older Posts »