Feeds:
Posts
Comments

Posts Tagged ‘Solar Thermal’

TODD WOODY, Green in the New York Times, August 25, 2010

California regulators on Wednesday approved a license for the nation’s first large-scale solar thermal power plant in two decades.

The licensing of the 250-megawatt Beacon Solar Energy Project after a two-and-a-half-year environmental review comes as several other big solar farms are set to receive approval from the California Energy Commission in the next month.

“I hope this is the first of many more large-scale solar projects we will permit,” said Jeffrey D. Byron, a member of the California Energy Commission, at a hearing in Sacramento on Wednesday. “This is exactly the type of project we want to see.”

Developers and regulators have been racing to license solar power plants and begin construction before the end of the year, when federal incentives for such renewable energy projects expire. California’s three investor-owned utilities also face a deadline to obtain 20% of their electricity from renewable sources by the end of 2010.

Still, it has been long slog as solar power plants planned for the Mojave Desert have become bogged down in disputes over their impact on protected wildlife and scarce water supplies.

In March 2008, NextEra Energy Resources filed an application to build the Beacon project on 2,012 acres of former farmland in Kern County. Long rows of mirrored parabolic troughs will focus sunlight on liquid-filled tubes to create steam that drives an electricity-generating turbine.

Some rural residents immediately objected to the 521 million gallons of groundwater the project would consume annually in an arid region on the western edge of the Mojave Desert. After contentious negotiations with regulators, NextEra agreed to use recycled water that will be piped in from a neighboring community.

“It’s been a lengthy process, an almost embarrassingly long lengthy process,” said Scott Busa, NextEra’s Beacon project manager, at Wednesday’s hearing. “Hopefully, we’re going from a lengthy process to a timely process.”

However, a lawyer for a union group that has been critical of Beacon told commissioners that obstacles still stood in the way of the power plant.

“Despite all the hard work that has been done, this project won’t get built anytime soon,” said Tanya Gulesserian, representing California Unions for Reliable Energy. She cited the absence of a deal to sell electricity from the Beacon power plant to a utility.

Mr. Busa responded that NextEra was in the final stages of negotiating a power purchase agreement.

Advertisements

Read Full Post »

TODD WOODY, The New York Times, September 30, 2009

brightsourceIn a rural corner of Nevada reeling from the recession, a bit of salvation seemed to arrive last year. A German developer, Solar Millennium, announced plans to build two large solar farms here that would harness the sun to generate electricity, creating hundreds of jobs.

But then things got messy. The company revealed that its preferred method of cooling the power plants would consume 1.3 billion gallons of water a year, about 20% of this desert valley’s available water.

Now Solar Millennium finds itself in the midst of a new-age version of a Western water war. The public is divided, pitting some people who hope to make money selling water rights to the company against others concerned about the project’s impact on the community and the environment.

“I’m worried about my well and the wells of my neighbors,” George Tucker, a retired chemical engineer, said on a blazing afternoon.

Here is an inconvenient truth about renewable energy: It can sometimes demand a huge amount of water. Many of the proposed solutions to the nation’s energy problems, from certain types of solar farms to biofuel refineries to cleaner coal plants, could consume billions of gallons of water every year.

“When push comes to shove, water could become the real throttle on renewable energy,” said Michael E. Webber, an assistant professor at the University of Texas in Austin who studies the relationship between energy and water.

Conflicts over water could shape the future of many energy technologies. The most water-efficient renewable technologies are not necessarily the most economical, but water shortages could give them a competitive edge.

In California, solar developers have already been forced to switch to less water-intensive technologies when local officials have refused to turn on the tap. Other big solar projects are mired in disputes with state regulators over water consumption.

To date, the flashpoint for such conflicts has been the Southwest, where dozens of multibillion-dollar solar power plants are planned for thousands of acres of desert. While most forms of energy production consume water, its availability is especially limited in the sunny areas that are otherwise well suited for solar farms.

At public hearings from Albuquerque to San Luis Obispo, Calif., local residents have sounded alarms over the impact that this industrialization will have on wildlife, their desert solitude and, most of all, their water.

Joni Eastley, chairwoman of the county commission in Nye County, Nev., which includes Amargosa Valley, said at one hearing that her area had been “inundated” with requests from renewable energy developers that “far exceed the amount of available water.”

Many projects involve building solar thermal plants, which use cheaper technology than the solar panels often seen on roofs. In such plants, mirrors heat a liquid to create steam that drives an electricity-generating turbine. As in a fossil fuel power plant, that steam must be condensed back to water and cooled for reuse.

The conventional method is called wet cooling. Hot water flows through a cooling tower where the excess heat evaporates along with some of the water, which must be replenished constantly. An alternative, dry cooling, uses fans and heat exchangers, much like a car’s radiator. Far less water is consumed, but dry cooling adds costs and reduces efficiency — and profits.

The efficiency problem is especially acute with the most tried-and-proven technique, using mirrors arrayed in long troughs. “Trough technology has been more financeable, but now trough presents a separate risk — water,” said Nathaniel Bullard, a solar analyst with New Energy Finance, a London research firm.

That could provide opportunities for developers of photovoltaic power plants, which take the type of solar panels found on residential rooftops and mount them on the ground in huge arrays. They are typically more expensive and less efficient than solar thermal farms but require a relatively small amount of water, mainly to wash the panels.

In California alone, plans are under way for 35 large-scale solar projects that, in bright sunshine, would generate 12,000 megawatts of electricity, equal to the output of about 10 nuclear power plants.

Their water use would vary widely. BrightSource Energy’s dry-cooled Ivanpah project in Southern California would consume an estimated 25 million gallons a year, mainly to wash mirrors. But a wet-cooled solar trough power plant barely half Ivanpah’s size proposed by the Spanish developer Abengoa Solar would draw 705 million gallons of water in an area of the Mojave Desert that receives scant rainfall.

One of the most contentious disputes is over a proposed wet-cooled trough plant that NextEra Energy Resources, a subsidiary of the utility giant FPL Group, plans to build in a dry area east of Bakersfield, Calif.

NextEra wants to tap freshwater wells to supply the 521 million gallons of cooling water the plant, the Beacon Solar Energy Project, would consume in a year, despite a state policy against the use of drinking-quality water for power plant cooling.

Mike Edminston, a city council member from nearby California City, warned at a hearing that groundwater recharge was already “not keeping up with the utilization we have.”

The fight over water has moved into the California Legislature, where a bill has been introduced to allow renewable energy power plants to use drinking water for cooling if certain conditions are met.

“By allowing projects to use fresh water, the bill would remove any incentives that developers have to use technologies that minimize water use,” said Terry O’Brien, a California Energy Commission deputy director.

NextEra has resisted using dry cooling but is considering the feasibility of piping in reclaimed water. “At some point if costs are just layered on, a project becomes uncompetitive,” said Michael O’Sullivan, a senior vice president at NextEra.

Water disputes forced Solar Millennium to abandon wet cooling for a proposed solar trough power plant in Ridgecrest, Calif., after the water district refused to supply the 815 million gallons of water a year the project would need. The company subsequently proposed to dry cool two other massive Southern California solar trough farms it wants to build in the Mojave Desert.

“We will not do any wet cooling in California,” said Rainer Aringhoff, president of Solar Millennium’s American operations. “There are simply no plants being permitted here with wet cooling.”

One solar developer, BrightSource Energy, hopes to capitalize on the water problem with a technology that focuses mirrors on a tower, producing higher-temperature steam than trough systems. The system can use dry cooling without suffering a prohibitive decline in power output, said Tom Doyle, an executive vice president at BrightSource.

The greater water efficiency was one factor that led VantagePoint Venture Partners, a Silicon Valley venture capital firm, to invest in BrightSource. “Our approach is high sensitivity to water use,” said Alan E. Salzman, VantagePoint’s chief executive. “We thought that was going to be huge differentiator.”

Even solar projects with low water consumption face hurdles, however. Tessera Solar is planning a large project in the California desert that would use only 12 million gallons annually, mostly to wash mirrors. But because it would draw upon a severely depleted aquifer, Tessera may have to buy rights to 10 times that amount of water and then retire the pumping rights to the water it does not use. For a second big solar farm, Tessera has agreed to fund improvements to a local irrigation district in exchange for access to reclaimed water.

“We have a challenge in finding water even though we’re low water use,” said Sean Gallagher, a Tessera executive. “It forces you to do some creative deals.”

In the Amargosa Valley, Solar Millennium may have to negotiate access to water with scores of individuals and companies who own the right to stick a straw in the aquifer, so to speak, and withdraw a prescribed amount of water each year.

“There are a lot of people out here for whom their water rights are their life savings, their retirement,” said Ed Goedhart, a local farmer and state legislator, as he drove past pockets of sun-beaten mobile homes and luminescent patches of irrigated alfalfa. Farmers will be growing less of the crop, he said, if they decide to sell their water rights to Solar Millennium.

“We’ll be growing megawatts instead of alfalfa,” Mr. Goedhart said.

While water is particularly scarce in the West, it is becoming a problem all over the country as the population grows. Daniel M. Kammen, director of the Renewable and Appropriate Energy Laboratory at the University of California, Berkeley, predicted that as intensive renewable energy development spreads, water issues will follow.

“When we start getting 20%, 30% or 40% of our power from renewables,” Mr. Kammen said, “water will be a key issue.”

Read Full Post »

Joseph Romm, ClimateProgress, June 22, 2009

cathy-zoiOn June 19th, the United States Senate, by voice vote, confirmed Cathy Zoi to be the Assistant Secretary for Energy Efficiency and Renewable Energy.

Cathy Zoi, CEO of Al Gore’s Alliance for Climate Protection, will now serve as Assistant Secretary for Energy Efficiency & Renewable Energy (EERE) under Energy Secretary Steven Chu.

Zoi has a unique combination of expertise in clean energy and high level federal government experience — she was Chief of Staff in the Clinton White House Office on Environmental Policy, managing the staff working on environmental and energy issues (recent writing below). Since I have known Zoi for nearly 2 decades and since in 1997 I held the job she is now nominated for, I can personally attest she will be able to hit the ground running in the crucial job of overseeing the vast majority of the development and deployment of plausible climate solutions technology.

What does EERE do? You could spend hours on their website, here, exploring everything they are into. Of the 12 to 14 most plausible wedges the world needs to stabilize at 350 to 450 ppm — the full global warming solution — EERE is the principal federal agency for working with businesses to develop and deploy the technology for 11 of them!

The stimulus and the 2009 budget dramatically increases — more than doubles — EERE funding for technology development and deployment. Zoi’s most important job is deployment, deployment, deployment. And again she is a uniquely qualified to get clean energy into the marketplace. Zoi was a manager at the US Environmental Protection Agency where “she pioneered the Energy Star Program,” which was the pioneering energy efficiency deployment program launched in the early 1990s.

So we know Zoi gets energy efficiency. Here’s what she wrote last year about “Embracing the Challenge to Repower America“:

Many Americans have a hard time thinking about our energy future, largely because their energy present is so challenging. With gasoline prices hovering near $4 per gallon and rising energy bills at home and at work, our economy is struggling with the burden of imported oil and reliance on fossil fuels. The need to satisfy the nation’s oil appetite has shaped our foreign and defense postures, and is a primary reason for our current entanglements overseas. Extreme weather here in the U.S. has us feeling uneasy. And the scientists remind us more urgently every week about the mounting manifestations of the climate crisis.

To solve these problems, we must repower our economy. Fast.

Vice President Gore has issued a challenge for us to do just that: Generate 100% of America’s electricity from truly clean sources that do not contribute to global warming — and do so within 10 years. It is an ambitious but attainable goal. American workers, businesses and families are up to it.

Meeting the challenge to repower America will deliver the affordability, stability and confidence our economy needs, as well as a healthy environment. And it will generate millions of good American jobs that can’t be outsourced.

It will involve simultaneous work on three fronts. First, get the most out of the energy we currently produce. Second, quickly deploy the clean energy technologies that we already know can work. Third, create a new integrated electricity grid to deliver power from where it is generated to where people live.

The first front involves energy efficiency. The potential here is vast and largely untapped. Now is the time to begin a comprehensive national energy upgrade that will reduce the energy bills of homeowners and businesses — even as costs of energy supplies may be on the rise.

The second front requires expanding the use of existing generation technologies. This will include accelerated growth in our wind energy industry. We have a strong running start — the U.S. was the leading installer of wind technology last year. Texas oilman T. Boone Pickens says we can get at least 20 percent of America’s electricity from wind power. We think he’s right.

Solar thermal power is also booming and poised for rapid acceleration. The resource potential is so vast that a series of collectors in the American southwest totaling just 92 miles on a side could power our entire electricity system. Utilities in Arizona, Nevada, and California have already begun to tap this potential, with plans for powering nearly one million homes underway.

Advances in thermal storage technologies, along with investments in our grid, mean that solar thermal power will be able to provide electricity at night, like coal power does today.

Nuclear and hydroelectric power facilities currently combine to contribute roughly 25% of America’s electricity. That will continue. Coal and natural gas can also play a significant role by capturing and storing their carbon emissions safely. Our hope is that this CCS emissions technology can be developed and commercialized quickly. Without it, coal isn’t “clean.” There are reportedly a few CCS plants now proposed in the U.S., although another roughly 70 proposed coal plants have no such plans to capture their carbon pollution.

The third front is the creation of a unified national electricity grid. A “super smart grid” will form the backbone and the entire skeleton of our modern power system. Efficient high voltage lines will move power from remote, resource-rich areas to places where power is consumed.

It will also allow households to make money by automatically using energy at the cheapest times and selling electricity back to the grid when a surplus is available can. A smart meter spins both ways.

Meeting this 100% clean power challenge will require a one-time capital investment in new infrastructure, with the bulk of funding coming from private finance. If policies reward reducing global warming pollution, private capital will flow towards clean energy solutions.

But the most important cost figures to consider may be the ones we’ll avoid. American utilities will spend roughly $100 billion this year on coal and natural gas to fuel power plants. And more next year and the year after that — until we make the switch to renewable fuels that are free and limitless.

The 10-year time frame is key.

The science, the economic pressures and our national security concerns demand swift, concerted action. The best climate scientists tell us we must make rapid progress to turn the corner on global carbon emissions or the ecological consequences will be irreversible.

The solutions are available now — there are no technology or material impediments. Failing to move swiftly will deprive the U.S. economy of earnings from one of the fastest growing technology sectors in the world.

We’ve done this before. We mobilized the auto industry in 12 months to service the hardware needs of WWII. The Marshall Plan to reconstruct Europe was executed in four years. And as Vice President Gore pointed out, we reached the moon in eight years, not ten.

We can do this. With support from the American people and leadership from elected officials, America can accept the challenge of building a safe, secure and sustainable energy future.”

Read Full Post »

UCILLA WANG, The Greentech Innovations Report, June 9, 2009

sunpowerWhen Pacific Gas and Electric Co. announced a deal to buy solar power from a proposed 230-megawatt project last Friday, it shone a spotlight on a two-year-old company with a different business model than many startups who have inked similar deals with the utility.

The deal also raised the question: Who is NextLight?

NextLight Renewable Power, based in San Francisco, wants to be purely a power plant developer and owner. The deal with PG&E is the first power purchase agreement for the startup, which is funded by private equity firm Energy Capital Partners, said Jim Woodruff, vice president of regulatory and government affairs, in an interview Monday.

“We think the tech agnostic approach is a winning business model,” Woodruff said. “All the core skills that are necessary to develop power projects are the same” for solar or other types of power plants.

The company boasts managers who have experience developing power plants and transmission projects as well as negotiating renewable power purchases.

NextLight’s CEO, Frank De Rosa, worked for PG&E for 23 years and held various roles at the utility, including the director of renewable energy supply, before founding NextLight in 2007. Woodruff worked for Southern California Edison for more than 10 years, first as an in-house counsel and later as the manager of regulatory and legislative issues for the utility’s alternative power business.

NextLight has been developing other solar power projects on public and private land in western states, including a plan to install up to 150 megawatts of generation capacity in Boulder City, Nevada.

The Boulder City Council is slated to vote on whether to lease 1,100 acres of city land to NextLight tonight. The company would sell 3,000-megawatt hours of energy per year to the city if the project is built, Woodruff said.

PG&E signed the deal with NextLight after it had inked many power purchase agreements in recent years to buy solar power from startup companies with the ambition to both develop their own technologies as well as owning and operating solar farms.

Some of the projects seem to be moving along. A few have hit snags. The deal to buy power from Finavera, an ocean power developer in Canada, fell apart last year when the California Public Utilities Commission decided that the contract would be too costly to ratepayers (see California Rejects PG&E Contract for Wave Energy).

OptiSolar, which was supposed to build a 550-megawatt solar farm to sell power to PG&E, couldn’t raise enough money to operate its solar panel factory and develop solar farms.

First Solar, another solar panel maker based in Tempe, Ariz., bought OptiSolar’s project development business for $400 million in April this year. First Solar would use its own, cadmium-telluride solar panels, instead of the amorphous silicon solar panels OptiSolar was developing. PG&E has said that the power contract would remain in place.

NextLight, on the other hand, would pick different solar technologies instead of developing its own. The approach isn’t new – SunEdison was doing this before others joined the party.

But there is no guarantee that this approach would enable NextLight to deliver energy more cheaply, and neither NextLight nor PG&E would discuss the financial terms of their contract.

“Our priority is about diversification of the resources we use and the companies we work with,” said PG&E spokeswoman Jennifer Zerwer. “Contracting for renewable via [power purchase agreements] is beneficial because it helps grow that ecosystem of renewable development, and there is no risk to our customers.”

Rumors have been circulating about whether NextLight would use SunPower’s equipment for the 230-megawatt project, which is called AV Solar Ranch 1, particularly since the project’s website features a photo of SunPower panels.

Woodruff said NextLight hasn’t selected a panel supplier. The company and PG&E have agreed to use solar panels, but the utility wouldn’t have a final say on the supplier, Woodruff added.

Gordon Johnson, head of alternative energy research at Hapoalim Securities, also cast doubt on the SunPower rumor.  “Based on our checks, we do not believe [SunPower] won the PPA with NextLight,” Johnson wrote in a research note.

NextLight plans to start construction of the AV Solar Ranch project in the third quarter of 2010 and complete it by 2013. The company said it would start delivering power in 2011.

The project would be located on 2,100 acres in Antelope Valley in Los Angeles County, Woodruff said. The company bought the property last year for an undisclosed sum.

The company would need approval from the Los Angeles County to construct the solar farm. The California Public Utilities Commission would need to approve the power purchase contract between PG&E and NextLight.

NextLight also is developing a power project with up to 425 megawatts in generation capacity in southern Arizona.  The company is negotiating to a farmland for the Agua Caliente Solar Project, Woodruff said. The 3,800 acres are located east of the city of Yuma.

The company is negotiating with a utility to buy power from Agua Caliente, said Woodruff, who declined to name the utility.

NextLight hasn’t decided whether to install solar panels or build a solar thermal power plant for the Agua Caliente project. Solar thermal power plants use mirrors to concentrate the sunlight for heating water or mineral oils to generate steam. The steam is then piped to run electricity-generating turbines.

But solar panels appear to be a more attractive option than solar thermal for now, Woodruff said.

“We’ve concluded that, in the near term, PV is more cost effective,” he said.

Read Full Post »

MendoCoastCurrent, May 20, 2009

Mendocino-Energy-Mill-SiteAt this core energy technology incubator, energy policy is created as renewable energy technologies and science move swiftly from white boards and white papers to testing, refinement and implementation.

The Vision

Mendocino Energy is located on the Mendocino coast, three plus hours north of San Francisco/Silicon Valley. On the waterfront of Fort Bragg, utilizing a portion of the now-defunct Georgia-Pacific Mill Site to innovate in best practices, cost-efficient, safe renewable and sustainable energy development – wind, wave, solar, bioremediation, green-ag/algae, smart grid and grid technologies, et al.

The process is collaborative in creating, identifying and engineering optimum, commercial-scale, sustainable, renewable energy solutions…with acumen.

Start-ups, utilities companies, universities (e.g. Precourt Institute for Energy at Stanford), EPRI, the federal government (FERC, DOE, DOI) and the world’s greatest minds gathering at this fast-tracked, unique coming-together of a green work force and the U.S. government, creating responsible, safe renewable energy technologies to quickly identify best commercialization candidates and build-outs.

The campus is quickly constructed on healthy areas of the Mill Site as in the past, this waterfront, 400+ acre industry created contaminated areas where mushroom bioremediation is underway.

Determining best sitings for projects in solar thermal, wind turbines and mills, algae farming, bioremediation; taking the important first steps towards establishing U.S. leadership in renewable energy and the global green economy.

Read Full Post »

TRACY SEIPEL, MercuryNews.com, May 15, 2009

brightsourceDeclaring it a record total, PG&E on Wednesday announced an expansion of solar-power contracts with Oakland’s BrightSource Energy for a total of 1,310 megawatts of electricity — enough to power 530,000 California homes.

The power purchase agreements, which will now include seven power plants, add to a previous contract the two companies struck in April 2008 for up to 900 megawatts of solar thermal power.

BrightSource called it the largest solar deal ever. The company now has 2,610 megawatts under contract, which it said is more than any other solar thermal company and represents more than 40 percent of all large-scale solar thermal contracts in the United States.

“The solar thermal projects announced today exemplify PG&E’s commitment to increasing the amount of renewable energy we provide to our customers throughout Northern and central California,” John Conway, senior vice president of energy supply for PG&E, said in a statement. “Through these agreements with BrightSource, we can harness the sun’s energy to meet our customers’ power requirements when they need it most — during hot summer days.”

John Woolard, chief executive of BrightSource Energy, said the additional contracts came about after BrightSource demonstrated its technology in Israel with results that were “at or above all the specifications. It proved to them that our technology works,” Woolard said. “They saw us executing and delivering” efficient production of solar energy.

BrightSource, which designs, builds and operates solar thermal plants, will construct the plants at a cost of at least $3 billion in the southwestern deserts of California, Nevada and Arizona. The company anticipates the first plant, a 110-megawatt facility at Ivanpah in eastern San Bernardino County, to begin operation by 2012.

Its technology uses sunlight reflected from thousands of movable mirrors to boil water to make steam. The steam then drives a turbine to generate electricity. BrightSource founder and Chairman Arnold Goldman’s previous company, Luz International, built nine solar plants in the Mojave Desert between 1984 and 1990, all of which are still operating.

In March, BrightSource reached an agreement with Southern California Edison to purchase 1,300 megawatts, then the largest solar contract ever, BrightSource said.

Investor-owned California utilities such as PG&E are required to get 20% of their power from renewable sources by 2010, or to by then have contracts for power from projects that go online by 2013. PG&E already has contracts in hand that exceed that 20% goal.  PG&E generates 12% of its energy from renewable sources now, and expects that to increase to 14% by the end of the year.

Read Full Post »

NANEA KALANI, Pacific Business News, January 12, 2009

217835-0-0-1Honolulu-based Sopogy announced last week that it will build a 50-megawatt system in Toledo, Spain, using its proprietary technology in partnership with a German energy financier and a Spanish project developer. The system could generate enough electricity to power 15,000 homes.

Sopogy founder and CEO Darren Kimura said the Spanish project, expected to be completed by the end of 2010 and cost about $300 million, is part of the company’s plans to expand its presence abroad as the U.S. financial market wanes.

“For about a year now, Sopogy has felt that it’s necessary to diversify and become more global,” Kimura told PBN. “Because our technology offers higher production and lower capital costs, we’re looking for sites where our technology has the best value, and the best value today lies in the European market.”

Read Full Post »

Older Posts »