Feeds:
Posts
Comments

Posts Tagged ‘Wave Energy Blogger’

wave-ocean-blue-sea-water-white-foam-photoMendoCoastCurrent, February 14, 2009

Acting Federal Energy Regulatory Commission (FERC) Chairman Jon Wellinghoff recently published Facilitating Hydrokinetic Energy Development Through Regulatory Innovation

Consider it required reading as a backgrounder on US wave energy policy development, FERC’s position on the MMS in renewables and FERC’s perceived role as a government agency in renewable energy, specifically marine energy, development.

Missing from this key document are the environmental and socio-economic-geographic elements and the related approval process and regulations for:

  • environmental exposure, noting pre/during/post impact studies and mitigation elements at each and every marine energy location;
  • socio-economic factors at each and every marine location (including a community plan with local/state/federal levels of participation).

Approaching the marine renewable energy frontier with a gestalt view toward technology, policy and environmental concerns is a recommended path for safe exploration and development of new renewable energy solutions.  

It has been FERC’s position that energy regulatory measures and policies must precede before serious launch of US projects and other documents by Wellinghoff have noted a six month lead time for policy development alone.

MendoCoastCurrent sees all elements fast-tracked in tandem.  Environmental studies/impact statements are gathered as communities gear up to support the project(s) while technology and funding partners consider siting with best practices and cost-efficient deployment of safe marine energy generation.  All of these elements happen concurrently while FERC, DOI/MMS, DOE local and state governments explore, structure and build our required, new paradigm for safe and harmonious ocean energy policies.

Read Full Post »

MendoCoastCurrent from Platts Energy Podium, February 12, 2009

The recently approved Economic Stimulus Plan includes expanding the US electric transmission grid and this may be the just the start of what will be a costly effort to improve reliability and deliver renewable energy to consumers from remote locations, Federal Energy Regulatory Commission (FERC) Acting Chairman Jon Wellinghoff told the Platts Energy Podium on February 12, 2009.

Wellinghoff defines the Stimulus energy funds as “seed money. But it really isn’t [enough] money to make huge advances in the overall backbone grid that we’re talking about to integrate substantial amounts of wind.”

While details of the plan compromises are unclear, the measure could provide $10 billion or more to transmission upgrades. Wellinghoff said backbone transmission projects could cost more than $200 billion. “And I think we’ll see that money coming from the private sector,” based on proposals already submitted to FERC.

Wellinghoff’s focused on Congress strengthening federal authority to site interstate high-voltage electric transmission lines to carry wind power to metropolitan areas and expects FERC to be heavily involved in formulation of either a comprehensive energy bill or a series of bills meant to address obstacles to increasing renewable wind, solar and geothermal energy, and other matters that fall within FERC’s purview. 

FERC plays a critical role “given the authorities we’ve been given in the 2005 and 2007 acts and our capabilities with respect to policy and implementation of energy infrastructure.”

Read Full Post »

MaritimeJournal.com, February 12, 2009

mj_newsletter_12-2-09_pelamisEdinburgh-based Pelamis Wave Power has won an order from UK renewable energy generator E.On for the next generation Pelamis Wave Energy Converter, known as the P2.

The P2 will be built at the Pelamis Leith Docks facility and trialed at the European Marine Energy Centre (EMEC) in Orkney. This is the first time a major utility has ordered a wave energy converter for installation in the UK and the first time the Pelamis P2 machine will be tested anywhere in the world.

Pelamis already has the world’s first multi-unit wave farm operational some 5km off the north coast of Portugal at Agucadora, where three 750kW machines deliver 2.25MW of electricity to the Portuguese grid. Operator Enersis has issued a letter of intent to Pelamis for a further 20MW of capacity to expand the successful project.

Licenses, consents and funding have been granted for the Orcadian Wave Farm, which will consist of four Pelamis generators supplied to ScottishPower Renewables. This installation, also at EMEC, will utilise existing electrical subsea cables, substation and grid connection.

Funding and consent has also been granted for Wave Hub, a wave energy test facility 15km off the north coast of Cornwall UK which is expected to be commissioned this year. It will consist of four separate berths, each capable of exporting 5MW of wave generated electricity. Ocean Prospect has secured exclusive access to one of the Wave Hub berths for the connection of multiple Pelamis devices.

Read Full Post »

CHRISTOPHER RUSSELL, The Advertiser, February 11, 2009

images3Wave energy company Carnegie Corporation has been licensed by the Australian state government to explore the seabed off the southeast coast. It is the first license issued in South Australia for a company to search for suitable sites for wave-harnessing technology.

Carnegie Corporation, which has demonstration wave energy projects operating in Western Australia, has been licensed to search an area covering 17,000ha adjacent to Port MacDonnell.

The South Australia (SA) “coast receives a world class wave energy resource and further adds to SA’s leadership in developing renewable energy including wind, solar and geothermal,” Carnegie Corporation managing director Michael Ottaviano said.

In an announcement this morning to the Australian Securities Exchange, Carnegie noted any successful site in the Southeast would be near existing power infrastructure, enabling the company to tap into the national electricity market.

Australian Premier Mike Rann welcomed the company’s investment. “Wave power – like geothermal power – has the potential to provide a huge base load of sustainable energy in the future,” Mr Rann said.

The license, signed today, also allows Carnegie to investigate building a 50MW wave power station. Carnegie’s CETO system operates by using an array of submerged buoys tethered to seabed pumps and anchored to the ocean floor.

Mr Rann said whether Carnegie determines that Port MacDonnell is a suitable site will depend on its tests. “But Carnegie is one of several emerging companies taking up the challenge of providing a new form of base-load sustainable energy,” he said. “It is one of two companies looking to SA to trial its wave power technology along our coastline – and we want to encourage others to do the same.”

Mr Rann said SA was the “most attractive in Australia” for investors in renewable energy. “SA now has 58% of the nation’s installed wind generation capacity and more than 70% of the geothermal exploration activity,” he said. “I have directed my department to prepare a similar framework specifically for the wave and tidal sector.”

Read Full Post »

MendoCoastCurrent, February 10, 2009

seferry_orkneyE.On is moving forward to install and test a single wave device to be fully operational in 2010. Based around a single 750kW Pelamis P2 device that is currently being built in Edinburgh, it will be installed and tested at the European Marine Energy Centre in Orkney.  

The first year of technology testing will be an extended commissioning period, with the next two years designed to improve the operation of the equipment. It would become the first utility to test a wave energy device at the Orkney centre, which is the only grid-connected marine test site in Europe.

“We recognise much work has to follow before we can be certain marine energy will fulfil its potential,” Amaan Lafayette, Marine Development Manager at E.On, said. “But the success of this device will give us the confidence to move to the next phase of commercialisation, which is larger arrays around the UK coastline.”

Read Full Post »

DAVID FOGARTY, Reuters Climate Change Correspondent, February 5, 2009

ceto-overview1For millennia, Australia’s rugged southern coast has been carved by the relentless action of waves crashing ashore.

The same wave energy could soon be harnessed to power towns and cities and trim Australia’s carbon emissions.

“Waves are already concentrated solar energy,” says Michael Ottaviano, who leads a Western Australian firm developing a method to turn wave power into electricity.

“The earth has been heated by the Sun, creating wind, which created the swells,” he told Reuters from Perth, saying wave power had the potential to supply all of Australia’s needs many times over.

Ottaviano heads Carnegie Corp, which has developed a method of using energy captured from passing waves to generate high-pressure sea water. This is piped onshore to drive a turbine and to create desalinated water.

A series of large buoys are tethered to piston pumps anchored in waters 15 to 50 metres deep (49 to 131 feet). The rise and fall of passing waves drives the pumps, generating water pressures of up to 1,000 pounds per square inch (psi).

This drives the turbine onshore and forces the water through a membrane that strips out the salt, creating fresh water in a process that normally requires a lot of electricity.

The CETO (named after a mythical Greek sea creature) pumps and buoys are located under water, differing from some other wave power methods, for example, those that sit on the surface.

The CETO concept was invented in the 1970s by a Western Australian businessman Alan Burns and initial development began in 1999, followed by completion of a working prototype by 2005.

Ottaviano says the company, which works in partnership with British-based wind farm developer Renewable Energy Holdings and French utility EDF, is in the process of selecting a site for its first commercial demonstration plant in Australia.

The 50 megawatt plant, enough to power a large town, would cost between A$300 million to A$400 million ($193 million to $257 million) and cover about 5 hectares (12.5 acres) of seabed.

Funding could be raised from existing or new shareholders, he believes.

Several sites in Western Australia, including Albany in the south and Garden Island off Perth, looked promising.

“There’s significant interest in these sorts of projects, even in the current financial environment,” he added.

And a 50 MW plant was just a drop in the ocean.

He pointed to a study commissioned by the company that said wave power had the potential to generate up to 500,000 MW of electricity along the southern half of Australia’s coast at depths greater than 50 metres (165 feet).

At shallower depths, the potential was 170,000 MW, or about four times Australia’s installed power generation capacity.

Interest in renewable energy in Australia and elsewhere is being driven by government policies that enshrine clean energy production targets as well as state-backed funding programmes for emerging clean-tech companies.

“Australia is going to be one of those markets because of what the government is doing to drive investment in this sector. For starters, there’s quite a bit of direct government funding for projects like this,” he said.

The federal government has also set a renewable energy target of 20% by 2020, which is expected to drive billions of dollars worth of investment in Australia over the next decade, with much of it going into wind farms.

A second company, BioPower Systems, is developing underwater wave and tidal power systems and expects to complete pilot projects off northern Tasmania this year.

The company’s bioWAVE system is anchored to the sea bed and generates electricity through the movement of buoyant blades as waves pass, in a swaying motion similar to the way sea plants, such as kelp, move.

Tidal power, in which electricity is generated by turbines spinning to the ebb and flow of tides, has not taken off in Australia, partly because of cost, but is expected to be a big provider of green power in Britain in coming years.

Last week, Britain announced five possible projects to generate power from a large tidal area in south-west England. The largest of the projects could generate 8,600 MW and cost 21 billion pounds ($29 billion).

CONSTANT

Ottaviano believes wave power is one of the few green technologies that can provide steady, or baseload power.

Wind and solar photovoltaic panels can only operate at 25 to 30% efficiencies because neither the wind nor the sun are permanently available.

Government policies should promote the development of technologies that delivered large-scale, high-availability clean power competitively, he said.

“If you look from an outcome point of view and leave it up to the market to work out how that is going to be achieved, it comes down to geothermal certainly being one of the potential technologies because (of) its high availability and also potentially cost-competitive and harnessable at large scale,” Ottaviano said.

Australia has large geothermal potential in remote central and northern areas.

“Wave is another logical one because it is high availability. It is 90 to 100% available in most sites around southern Australia.”

“You could power the country 10 times over.”

Read Full Post »

SUSAN CHAMBERS, The World, February 4, 2009

coos-bay-intro2Coos Bay, Oregon — The jobs are coming, so Ocean Power Technologies insists.

OPT spokesman Len Bergstein said Monday the company wants to get stimulus funds from the federal government.

“We have a strong interest in presenting a project that would be jobs-ready right now,” Bergstein said.

OPT wants to get a test buoy in the water soon. It recently formed an agreement with Lockheed Martin in which Lockheed would provide construction, systems integration and deployment work, according to a press release.

The announcement last week followed on a similar report from Oregon Iron Works in Clackamas and American Bridge in Reedsport that said they plan to share buoy construction work, if Oregon Iron gets OPT’s contract.

Bergstein said the Lockheed agreement is for higher level technical, systems integration work.

“It would not replace work on the coast,” he said.

OPT has said it hopes to get a buoy in the water this year and to submit plans to the Federal Energy Regulatory Commission and the federal government in March.

The Obama administration recently put together the White House Task Force on Middle Class Working Families, chaired by Vice President Joe Biden, to boost the living standards of the country’s middle class. Its first focus is green jobs, those that use renewable energy resources, reduce pollution, conserve energy and natural resources and reconstitute waste. The task force’s first meeting is Feb. 27.

If the community can get behind OPT’s plans, Bergstein said, the company could submit it to the task force.

“We want to demonstrate that wave energy projects are the kinds of things that can bring jobs to coastal communities,” he said. “Nothing could say that better than being part of a stimulus package.”

Read Full Post »

« Newer Posts - Older Posts »