Feeds:
Posts
Comments

Posts Tagged ‘Solar PV’

UCILLA WANG, The Greentech Innovations Report, June 9, 2009

sunpowerWhen Pacific Gas and Electric Co. announced a deal to buy solar power from a proposed 230-megawatt project last Friday, it shone a spotlight on a two-year-old company with a different business model than many startups who have inked similar deals with the utility.

The deal also raised the question: Who is NextLight?

NextLight Renewable Power, based in San Francisco, wants to be purely a power plant developer and owner. The deal with PG&E is the first power purchase agreement for the startup, which is funded by private equity firm Energy Capital Partners, said Jim Woodruff, vice president of regulatory and government affairs, in an interview Monday.

“We think the tech agnostic approach is a winning business model,” Woodruff said. “All the core skills that are necessary to develop power projects are the same” for solar or other types of power plants.

The company boasts managers who have experience developing power plants and transmission projects as well as negotiating renewable power purchases.

NextLight’s CEO, Frank De Rosa, worked for PG&E for 23 years and held various roles at the utility, including the director of renewable energy supply, before founding NextLight in 2007. Woodruff worked for Southern California Edison for more than 10 years, first as an in-house counsel and later as the manager of regulatory and legislative issues for the utility’s alternative power business.

NextLight has been developing other solar power projects on public and private land in western states, including a plan to install up to 150 megawatts of generation capacity in Boulder City, Nevada.

The Boulder City Council is slated to vote on whether to lease 1,100 acres of city land to NextLight tonight. The company would sell 3,000-megawatt hours of energy per year to the city if the project is built, Woodruff said.

PG&E signed the deal with NextLight after it had inked many power purchase agreements in recent years to buy solar power from startup companies with the ambition to both develop their own technologies as well as owning and operating solar farms.

Some of the projects seem to be moving along. A few have hit snags. The deal to buy power from Finavera, an ocean power developer in Canada, fell apart last year when the California Public Utilities Commission decided that the contract would be too costly to ratepayers (see California Rejects PG&E Contract for Wave Energy).

OptiSolar, which was supposed to build a 550-megawatt solar farm to sell power to PG&E, couldn’t raise enough money to operate its solar panel factory and develop solar farms.

First Solar, another solar panel maker based in Tempe, Ariz., bought OptiSolar’s project development business for $400 million in April this year. First Solar would use its own, cadmium-telluride solar panels, instead of the amorphous silicon solar panels OptiSolar was developing. PG&E has said that the power contract would remain in place.

NextLight, on the other hand, would pick different solar technologies instead of developing its own. The approach isn’t new – SunEdison was doing this before others joined the party.

But there is no guarantee that this approach would enable NextLight to deliver energy more cheaply, and neither NextLight nor PG&E would discuss the financial terms of their contract.

“Our priority is about diversification of the resources we use and the companies we work with,” said PG&E spokeswoman Jennifer Zerwer. “Contracting for renewable via [power purchase agreements] is beneficial because it helps grow that ecosystem of renewable development, and there is no risk to our customers.”

Rumors have been circulating about whether NextLight would use SunPower’s equipment for the 230-megawatt project, which is called AV Solar Ranch 1, particularly since the project’s website features a photo of SunPower panels.

Woodruff said NextLight hasn’t selected a panel supplier. The company and PG&E have agreed to use solar panels, but the utility wouldn’t have a final say on the supplier, Woodruff added.

Gordon Johnson, head of alternative energy research at Hapoalim Securities, also cast doubt on the SunPower rumor.  “Based on our checks, we do not believe [SunPower] won the PPA with NextLight,” Johnson wrote in a research note.

NextLight plans to start construction of the AV Solar Ranch project in the third quarter of 2010 and complete it by 2013. The company said it would start delivering power in 2011.

The project would be located on 2,100 acres in Antelope Valley in Los Angeles County, Woodruff said. The company bought the property last year for an undisclosed sum.

The company would need approval from the Los Angeles County to construct the solar farm. The California Public Utilities Commission would need to approve the power purchase contract between PG&E and NextLight.

NextLight also is developing a power project with up to 425 megawatts in generation capacity in southern Arizona.  The company is negotiating to a farmland for the Agua Caliente Solar Project, Woodruff said. The 3,800 acres are located east of the city of Yuma.

The company is negotiating with a utility to buy power from Agua Caliente, said Woodruff, who declined to name the utility.

NextLight hasn’t decided whether to install solar panels or build a solar thermal power plant for the Agua Caliente project. Solar thermal power plants use mirrors to concentrate the sunlight for heating water or mineral oils to generate steam. The steam is then piped to run electricity-generating turbines.

But solar panels appear to be a more attractive option than solar thermal for now, Woodruff said.

“We’ve concluded that, in the near term, PV is more cost effective,” he said.

Advertisements

Read Full Post »

MendoCoastCurrent, January 1, 2009 

Here's a possibility...prius with solar panels

Here's a possibility...prius with solar panels

Toyota Motor is developing a vehicle that will be powered solely by solar energy in an effort to turn around its struggling business with a futuristic ecological car, a top Japanese business daily reported.

The Nikkei newspaper, however, said it will be years before the planned vehicle will be available on the market. Toyota’s offices were closed Thursday and officials were not immediately available for comment.

Toyota is working on an electric vehicle that will get power from solar cells equipped on the vehicle, and that can be recharged with electricity generated from solar panels on the roofs of homes. The automaker later hopes to develop a model totally powered by solar cells on the vehicle.

In December, Toyota stunned the nation by announcing it will slip into its first operating loss in 70 years, as it gets battered by a global slump, especially in the key U.S. market. The surging yen has also hurt the earnings of Japanese automakers.

Still, Toyota is a leader in green technology and executives have stressed they won’t cut back on environmental research despite its troubles.

Toyota, the manufacturer of the Lexus luxury car and Camry sedan, has already begun using solar panels at its Tsutsumi plant in central Japan to produce some of its own electricity.

Read Full Post »

MARIA DICKERSON, the Los Angeles Times, December 27, 2008

7nov07_solarAt a time when many investors are sticking money in their mattresses, Californians are putting it on their roofs.

Applications for state rebates to install solar panels hit their highest level ever in December, one of the few bright spots in an otherwise gloomy economy.

Residents filed a record 1,215 applications seeking solar subsidies this month, according to the California Public Utilities Commission. That’s the best showing in the program’s 24-month history, and December isn’t even finished. More than 18,000 California homeowners and businesses have applied for rebates over the last two years. Although not everyone who files this paperwork actually ends up installing solar, the figures are viewed as a reliable barometer of future demand.

A record 133 megawatts of solar photovoltaics have been installed in California so far this year, even as the state’s economy has stumbled.

Michelle Gerdes of Long Beach just lost her job as a designer for a dinnerware manufacturer. Her husband, Steve, works for an air-conditioning company whose business is slowing. But that didn’t stop the couple from buying $32,000 worth of photovoltaic panels that went up on their roof this month. The state rebate and a federal tax credit will reduce their out-of-pocket costs to about $17,000 — a substantial saving but still a big chunk of change. “We decided to just go for it,” said Michelle Gerdes, 44. “It’s the right thing to do for the environment . . . and it will definitely increase the value of our house.”

Coming in the midst of a deep recession, continued strong demand for solar has thrilled — and puzzled — officials who oversee the California Solar Initiative, which seeks to put panels on 1 million roofs in California within a decade. Consumers nationwide are in a serious spending funk. Even with California’s generous incentives, photovoltaic systems can cost tens of thousands of dollars.

New federal tax breaks have persuaded some homeowners to take the plunge, said Molly Sterkel, who manages rooftop solar efforts for the utilities commission.

Others are being enticed by new financing models pioneered in California that allow them to go solar for little or no money down. Add rising electricity rates in many parts of the state and turmoil in the financial markets, and some consumers are concluding that sunshine is their safest investment.

California is by far the nation’s leader in rooftop solar, with well over half the installed capacity.

“In an economic downturn, people are looking for ways to save money on things that they are going to do anyway,” said Nat Kreamer, founder of SunRun Inc., a San Francisco residential solar energy company. “Electricity is one of those fundamentals.”

Launched in January 2007, the California Solar Initiative is an attempt to push photovoltaics on a mass scale in California to help cut greenhouse gas emissions and shore up the state’s energy supply.

The goal is 3,000 megawatts installed by 2018, enough to displace five good-sized power plants.

Funded by utility ratepayers across the state, the $3-billion program offers rebates to Californians who install panels on their homes and businesses. Incentives vary. But refunds typically range from 20% to 50% of a system’s cost.

The incentives are structured to decline over time as demand grows, meaning Californians who act sooner will get the biggest refunds.

Rooftop solar will get even more attractive in January. Congress recently expanded federal investment tax credits for residential solar arrays. Starting next year, homeowners will be eligible for tax breaks of up to 30% of the entire cost of their projects. Those benefits had previously been capped at $2,000 per system.

“That has really spurred the market,” said Lyndon Rive, chief executive of SolarCity, a Foster City, Calif.-based solar installer. “Our cash sales have increased dramatically.”

For consumers who still can’t afford to purchase, SolarCity has a residential leasing option. It lets them put solar on their roofs without the hefty upfront costs. Customers cut their power bills while the rebates and tax credits flow to SolarCity, which maintains ownership of the panels.

The deal has proved so popular that it has turned SolarCity into the state’s largest installer of residential rooftop photovoltaics.

Kreamer’s SunRun offers a similar program known as a power purchase agreement. His company installs, maintains and owns the systems. Homeowners sign a long-term contract with SunRun for solar energy that’s priced below what they pay for conventional power.

Californians pay some of the highest electricity rates in the country. Rates in many parts of the state are rising.

The Gerdeses’ utility, Southern California Edison, is asking state regulators to allow it to collect more than $700 million extra from its ratepayers next year.

It won’t be coming from the Gerdeses. With solar panels now snug on their roof, the couple needn’t worry about rising electricity bills as the recession deepens.

“We can think about turning the hot tub back on now,” Michelle Gerdes said.

Read Full Post »

MendoCoastCurrent, December 22, 2008

solar_184x138Pacific Gas and Electric Company (PG&E) announced today that it has entered into a long-term agreement with El Dorado Energy, LLC, a wholly-owned subsidiary of Sempra Generation, to purchase 10 megawatts of renewable, photovoltaic solar energy from Sempra Generation’s new El Dorado Energy Solar facility in Nevada. 

“Solar energy is a reliable and environmentally-friendly way to help meet California’s peak energy demands,” said Jack Keenan, chief operating officer for PG&E. “Through our partnership with Sempra Generation, we will significantly increase the amount of solar energy we provide to our customers in 2009.” 

The El Dorado Energy solar facility is located on 80 acres adjacent to Sempra Generation’s existing gas-fired power plant in Boulder City, Nevada. Power deliveries to PG&E are expected to begin by January 1, 2009. The project will generate up to 23.2 gigawatt-hours of renewable energy annually. That is equivalent to the amount of energy needed to serve more than 3,360 residential homes annually. 

”We commend Pacific Gas and Electric Company and its decision to encourage and sustain new renewable energy installations such as El Dorado Energy Solar,” said Michael W. Allman, president and chief executive officer of Sempra Generation. “Our mutual, long-term commitment to solar energy will benefit western U.S. power customers for generations to come.”

Since 2002, PG&E has entered into contracts for more than 20% of its future electric power deliveries from renewable sources. On average, more than 50% of the electricity PG&E delivers to its customers comes from generating sources that emit no carbon dioxide, making the company’s energy among the cleanest in the nation.

Pacific Gas and Electric Company, a subsidiary of PG&E Corporation, is one of the largest combined natural gas and electric utilities in the United States. Based in San Francisco, with 20,000 employees, the company delivers some of the nation’s cleanest energy to 15 million people in northern and central California.

Read Full Post »

Redwood Times, December 17, 2008

cudrefin_switzerlandashxCalifornia State Senator Patricia Wiggins has introduced new legislation to encourage more production of solar power by compensating smaller producers for all of the solar power that they generate.

Currently, residential electric customers can participate in the state’s solar program, known as the California Solar Initiative, and receive subsidies for the installation of photovoltaic panels to produce solar power. They may also participate in “net-energy metering,” a program that gives customers credits for the amount of solar power they produce against their electric bills. However, power produced beyond their own use is returned to their electric provider for free.

SB 7 would not only allow residential utility customers to continue to receive credits for the solar power they produce for their own use, it would also allow them to contribute more solar-based power to the electrical grid and be compensated for it at the same rate a utility provider would pay.

The state already has legislation to reduce greenhouse gas emissions by getting 33% of its power from renewable sources.

SB7 “offers a fair and reasonable path to increased production of solar power, and it contributes a win-win for solar power producers, utility providers and our environment,” Wiggins said.

Read Full Post »

Wind-Works.org, November 17, 2008

The French Minister for Energy and the Environment announced that the government was launching an aggressive new program to propel the country to the forefront of solar energy development.

The announcement by Minister Jean-Louis Borloo was made at the annual Grenelle meeting of French environmental stakeholders. Minister Borloo outlined 50 actions the Sarkozy government would take to substantially increase the role of renewable energy in France.

As part of its commitment to the European Union, Borloo said that France will supply 23% of its energy with renewables by 2020.

Most dramatically, Borloo said that France intends to become one of the world’s leaders in the development of solar photovoltaic technology and will increase the supply of solar-generated electricity 400 times by 2020.

To do that, France will create a new tariff category for commercial buildings of €0.45/kWh ($0.57 USD/kWh). This is intended to aid businesses, factories, and farmers to take profitable advantage of their large rooftops. As a measure of the government’s seriousness, there will be no limit on the size of commercial rooftop projects that qualify for the tariff. For comparison, the French commercial tariff for 2009 is higher than that for Germany, the current world leader in solar PV development.

France has been a solar energy laggard in Europe. By mid 2008 there was only 18 MW of solar PV installed on the mainland. (France still maintains several overseas territories.) However, changes to the country’s system of Advanced Renewable Tariffs (Tarife Equitable) in 2006 resulted in a flood of new projects. There is a huge backlog of some 12,000 systems representing 400 MW that are awaiting connection.

The government attributes the rapid growth to changes made to the tariffs for solar PV in 2006 when the government doubled the base feed-in tariff from €0.15 to €0.30 /kWh, the addition of another €0.25 /kWh for façade cladding, and the inclusion of a 50% tax credit for residential installations.

The residential market accounts for 40% of French installations. The typical project is about 3 kW.

Even with the backlog, France’s development of solar PV is well behind Germany, Spain, and Italy and Borloo wants to change that.

The objective, Borloo said, is to install 5,400 MW by 2020, an increase of 400 times that of present installations.

There will be no change to the base tariff of €0.30/kWh ($0.38 USD/kWh) for ground-mounted projects and France continue the €0.55/kWh ($0.70 USD/kWh) tariff for building integrated systems.

Borloo suggested that France may also apply a feed-in tariff to concentrating solar power stations.

These tariffs will remain in effect until 2012 when they will be revisited as part of the normal review process.

To simplify interconnection of solar PV and reduce future backlogs with the quasi privatized state utility, Electricité de France, the government will implement an internet registration process for projects up to 450 kW.

Small solar PV systems less than 3 kW will also be exempted from certain taxes and fees as well.

Tariffs for wind energy will remain the same, though wind projects will have to undergo new siting requirements..

Read Full Post »

MendoCoastCurrent, October 23, 2008

A new hybrid inorganic/organic material could usher in solar cells that absorb all solar wavelengths. Researchers have created a new material that overcomes two of the major obstacles to solar power: it absorbs all the energy contained in sunlight, and generates electrons in a way that makes them easier to capture.

Ohio State University chemists and their colleagues combined electrically conductive plastic with metals including molybdenum and titanium to create the hybrid material.
This new material is the first that can absorb all the energy contained in visible light at once.

The new polymer could also enable much more efficient charge separation since electrons dislodged by light in the material remain free much longer than in conventional solar cells used in solar powered battery chargers. 

The inorganic/organic hybrid polymer material can be made into polymer blends that can “absorb essentially across the entire solar spectrum–they go from about 300 nanometers down to about 10,000 nanometers,” said professor Malcolm Chisholm of Ohio State University. 

Solar materials work by using incident light to boost the energy of electrons, thereby separating then from the hull of atoms in the material. They can then be harvested to generate electricity.

However, separated electrons fall back into their host atoms if not collected quickly. Usually, solar materials either fluoresce (called singlet emisson) or phosphoresce (triplet emission). The new hybrid material does both, further increasing potential efficiency.

“The materials we have made show both singlet and triplet emissions,” said Chisholm. “The singlet state lasts a relatively long time, in the region of about 10 pico seconds; the triplet lasts a lot longer–up to a 100 or so microseconds, which should be good for separating the electrons and the hull.”

At this point, the material is years from commercial development, but he added that this experiment provides a proof of concept — that hybrid solar cell materials such as this one can offer unusual properties.

The project was funded by the National Science Foundation and Ohio State’s Institute for Materials Research.

Chisholm is working with Arthur J. Epstein, Distinguished University Professor of chemistry and physics; Paul Berger, professor of electrical and computer engineering and physics; and Nitin Padture, professor of materials science and engineering to develop the material further. That work is part of the Advanced Materials Initiative, one Ohio State’s Targeted Investment in Excellence (TIE) programs.

Read Full Post »

Older Posts »