Feeds:
Posts
Comments

Posts Tagged ‘Scottish Power’

PETER ASMUS, Pike Research, June 17, 2009

wave-ocean-blue-sea-water-white-foam-photoThe earth is the water planet, so it should come as no great surprise that forms of water power have been one of the world’s most popular “renewable” energy sources. Yet the largest water power source of all – the ocean that covers three-quarters of earth – has yet to be tapped in any major way for power generation. There are three primary reasons for this:

  • The first is the nature of the ocean itself, a powerful resource that cannot be privately owned like land that typically serves as the foundation for site control for terrestrial power plants of all kinds;
  • The second is funding. Hydropower was heavily subsidized during the Great Depression, but little public investment has since been steered toward marine renewables with the exception of ocean thermal technologies, which were perceived to be a failure.
  • The third reason why the ocean has not yet been industrialized on behalf of energy production is that the technologies, materials and construction techniques did not exist until now to harness this renewable energy resource in any meaningful and cost effective way.

Literally hundreds of technology designs from more than 100 firms are competing for attention as they push a variety emerging ocean renewable options. Most are smaller upstart firms, but a few larger players – Scottish Power, Lockheed Martin and Pacific Gas & Electric — are engaged and seeking new business opportunities in the marine renewables space. Oil companies Chevron, BP and Shell are also investing in the sector.

In the U.S., the clear frontrunner among device developers is Ocean Power Technologies (OPT). It was the first wave power company to issue successful IPOs through the London Stock Exchange’s AIM market for approximately $40 million and then another on the U.S. Stock Exchange in 2007 for $100 million. OPT has a long list of projects in the pipeline, including the first “commercial” installation in the U.S. in Reedsport, Oregon in 2010, which could lead to the first 50 MW wave farm in the U.S. A nearby site in Coos Bay, Oregon represents another potential 100 MW deployment.

While the total installed capacity of emerging “second generation” marine hydrokinetic resources – a category that includes wave, tidal stream, ocean current, ocean thermal and river hydrokinetic resources – was less than 10 MW at the end of 2008, a recent surge in interest in these new renewable options has generated a buzz, particularly in the United Kingdom, Ireland, the United States, Portugal, South Korea, Australia, New Zealand and Japan, among other countries. It is expected that within the next five to eight years, these emerging technologies will become commercialized to the point that they can begin competing for a share of the burgeoning market for carbon-free and non-polluting renewable resources.

The five technologies covered in a new report by Pike Research are the following:

  • Tidal stream turbines often look suspiciously like wind turbines placed underwater. Tidal projects comprise over 90 percent of today’s marine kinetic capacity totals, but the vast majority of this installed capacity relies upon first generation “barrage” systems still relying upon storage dams.
  • Wave energy technologies more often look more like metal snakes that can span nearly 500 feet, floating on the ocean’s surface horizontally, or generators that stand erect vertically akin to a buoy. Any western coastline in the world has wave energy potential.
  • River hydrokinetic technologies are also quite similar to tidal technologies, relying on the kinetic energy of moving water, which can be enhanced by tidal flows, particularly at the mouth of a river way interacting with a sea and/or ocean.
  • Ocean current technologies are similar to tidal energy technologies, only they can tap into deeper ocean currents that are located offshore. Less developed than either tidal or wave energy, ocean current technologies, nevertheless, are attracting more attention since the resource is 24/7.
  • Ocean thermal energy technologies take a very different approach to generating electricity, capturing energy from the differences in temperature between the ocean surface and lower depths, and can also deliver power 24/7.

While there is a common perception that the U.S. and much of the industrialized world has tapped out its hydropower resources, the Electric Power Research Institute (EPRI) disputes this claim. According to its assessment, the U.S. has the water resources to generate from 85,000 to 95,000 more megawatts (MW) from this non-carbon energy source, with 23,000 MW available by 2025. Included in this water power assessment are new emerging marine kinetic technologies. In fact, according to EPRI, ocean energy and hydrokinetic sources (which includes river hydrokinetic technologies) will nearly match conventional new hydropower at existing sites in new capacity additions in the U.S. between 2010 and 2025.

The UN projects that the total “technically exploitable” potential for waterpower (including marine renewables) is 15 trillion kilowatt-hours, equal to half of the projected global electricity use in the year 2030. Of this vast resource potential, roughly 15% has been developed so far. The UN and World Energy Council projects 250 GW of hydropower will be developed by 2030. If marine renewables capture just 10% of this forecasted hydropower capacity, that figure represents 25 GW, a figure Pike Research believes is a valid possibility and the likely floor on market scope.

The demand for energy worldwide will continue to grow at a dramatic clip between 2009 and 2025, with renewable energy sources overtaking natural gas as the second largest source behind coal by 2015 (IEA, 2008). By 2015, the marine renewable market share of this renewable energy growth will still be all but invisible as far as the IEA statistics are concerned, but development up to that point in time will determine whether these sources will contribute any substantial capacity by 2025. By 2015, Pike Research shows a potential of over 22 GW of all five technologies profiled in this report could come on-line. Two of the largest projects – a 14 GW tidal barrage in the U.K. and a 2.2 GW tidal fence in the Philippines — may never materialize, and/or will not likely be on-line by that date, leaving a net potential of more than 14 GW.

By 2025, at least 25 GW of total marine renewables will be developed globally. If effective carbon regulations in the U.S. are in place by 2010, and marine renewable targets established by various European governments are met, marine renewables and river hydrokinetic technologies could provide as much as 200 GW by 2025: 115 GW wave; 57 GW tidal stream; 20 GW tidal barrage; 4 GW ocean current; 3 GW river hydrokinetic; 1 GW OTEC.

About the author: Peter Asmus is an industry analyst with Pike Research and has been covering the energy sector for 20 years. His recent report on the ocean energy sector for Pike Research is now available, and more information can be found at http://www.pikeresearch.com. His new book, Introduction to Energy in California, is now available from the University of California Press (www.peterasmus.com).

Advertisements

Read Full Post »

PETER BROWN, EnergyCurrent.com, February 16, 2009

stromnessOn a Monday morning in May last year, the Atlantic tide set a turbine in motion on the seabed off Orkney, and the energy captured was connected to the national grid. It was, said Jim Mather, Scotland’s Minister for Enterprise, Energy and Tourism, a “massive step forward”.

The amount of electricity generated may have been tiny, but for marine engineers the significance was huge. Their industry had stopped paddling and started to swim.

For small companies trying to get wave or tide devices off the drawing board and into the sea, many problems lie in wait. All turbines, whether they sit on the seabed or float, must withstand that once-in-a-century wave that could be a thousand times more powerful than the average. Conditions vary with the seasons and the seabed. A device that works in a fjord might not function in a firth. Rigorous, long-term testing is therefore vital.

“There are parallels with wind,” says Alan Mortimer, head of renewables policy at Scottish Power. “Many different types of turbine were proposed in the early Eighties. They boiled down to a small number of successful concepts. The same needs to happen with marine devices, but the difference is that they need to be full- size just to be tested.

“To get a reasonable number of prototypes into the water costs millions. What these small companies need is capital support.”

That, however, is hard to find. The Wave and Tidal Energy Support Scheme (Wates), which put GBP13.5 million into promising technologies, is now closed. Last year the Scottish Government offered the 10m Saltire Prize for a commercially viable scheme, but the Institution of Mechanical Engineers (IMechE), in its recent report Marine Energy: More Than Just a Drop in the Ocean?, called on the Government to provide another 40m.

This would go towards schemes to be tested at EMEC, the European Marine Energy Centre, which has two supported sites, with grid access, at Orkney. It was there that an Irish company, OpenHydro, made the grid breakthrough last year. “It’s desperately important that we grasp the nettle now,” says William Banks, IMechE’s president. “We have the micro-systems in place and I’d like to see them developed to the macro stage. However, unless we do that step by step, we’ll be in trouble.”

An estimated 50 teams are working around the world on marine energy. The danger is that Britain, and Scotland in particular, could lose the race, even though, as Alex Salmond, Scotland’s First Minister, says, “Scotland has a marine energy resource which is unrivalled in Europe.”

Scotland has a quarter of Europe’s tidal resources and a tenth of its wave potential.

Around 1,000 people work in Scottish marine energy, but that figure could billow. “You’re talking about an exercise that could transform the marine industry into something equivalent to oil and gas,” says Martin McAdam, whose company, Aquamarine Power, is growing fast.

Among his rivals in Scotland are AWS Ocean Energy, based near Inverness, with Archimedes, a submerged wave machine; Hammerfest UK, which wants to develop three 60MW tidal sites and is working with Scottish Power; Pelamis Wave Power, who are based in Edinburgh; and Scotrenewables, based in Orkney, who are currently developing a floating tidal turbine.

Politicians need to be educated about marine energy’s potential, says Banks. Indeed, IMechE has highlighted the need for sustained political leadership if what many see as the biggest problem – that of the grid – is to be solved. Why bring energy onshore if it can’t then reach homes?

“Grids were built to connect large power stations to cities. Now you’re going to have electricity generated all over the countryside. It’s a huge challenge,” says McAdam.

“We have had meetings with Ofgen and the national grid companies and we’re outlining the need to have grids to support at least 3,000MW of energy by 2020. That is definitely possible.” McAdam adds: “A European undersea grid is also being promoted and we’re very supportive of that.”

Such a system would help to overcome a frequent objection to renewables – their fickleness. If waves were strong in Scotland, Finland or France could benefit, and vice versa.

Another challenge is the cost of installation. “At the moment we’re competing with oil and gas for boats,” says McAdam. “We need to move away from using heavy-lift, jack-up vessels.” The answer might be devices that can be floated into position and then weighted down.

The race between suppliers is speeding up. Permission for a 4MW station at Siadar, off Lewis in the Western Isles, has just been granted to Wavegen, based in Inverness, and Npower Renewables. It could power about 1,500 homes, creating 70 jobs.

Among the success stories are the three 140-metre, red tubes developed by Pelamis (named after a sea serpent) which already float off the northern Portuguese coast at Aguadoura. More Pelamis turbines are to be installed at EMEC, along with Aquamarine’s wave device Oyster.

Oyster is basically a giant flap which feeds wave energy onshore to be converted to electricity. It has already been made, at a former oil and gas plant at Nigg, north of Inverness. A high- pressure pipeline was completed in December and a hydro-electric station will be installed this spring. In the summer, Oyster will finally be bolted to piles hammered into the seabed.

Unlike wave energy, tidal power needs a channel between two land masses – and in the roaring Pentland Firth, between Caithness and Orkney, Scotland has what has been called “the Saudi Arabia of marine power”, Europe’s largest tidal resource. To exploit it, a GBP2 million contract to build Aquamarine’s tidal power device, Neptune, was awarded last month. It will be tested at EMEC.

Elsewhere, SeaGen, an “underwater windmill” developed by a Bristol company, has just generated 1.2MW near the mouth of Strangford Lough, Northern Ireland.
But the most controversial of Britain’s tidal energy schemes is, of course, in the Severn Estuary, where a barrage could provide around 5% of Britain’s energy. Environmentalists fear irreparable damage to marshes and mudflats, but the Government is known to prefer the barrage to other, smaller options. The decision it takes next year is sure to be eagerly watched in Scotland.

Somewhat overshadowed by the Severn plan is Wave Hub, a project to build a wave-power station 10 miles off St Ives, on Cornwall’s north coast, using both Pelamis and a sea-bed device developed by ORECon of Plymouth. An application to create a safety area around it has just been submitted, part of the meticulous planning that precedes any marine trial.

“We have to have environmentalists looking at the impact on fisheries, flora and fauna,” says McAdam. “And we have to be completely open with the communities we’re going into. But most people realise that climate change and energy security are real things. We want to minimalise our environmental impact and give the country a means of isolating itself from the volatility of oil and gas.”

In theory, marine energy could generate a fifth of the UK’s electricity needs, but that would require a multitude of stations. Bill Banks believes nuclear power will be needed. “But we also need a variety of renewables,” he says. “Marine will take its place along with bio, hydro and wind energy. It’s available, it’s there at the moment, and if we get our act together I think we can lead Europe. We need a synergy of activity.”

Read Full Post »