Feeds:
Posts
Comments

Posts Tagged ‘Biopower Systems’

EMILY AVILES, Ode Magazine, October 26, 2009

mainLately, the shores of San Francisco, California have been attracting more than wet-suit clad surfers and their boards.

A site five miles off the city’s western beach is being considered for a new Oceanside Wave Energy project.

Australian energy company BioPower Systems is collaborating with the City of San Francisco to investigate wave energy generation from the Pacific Ocean.

Wave power, not to be confused with tidal power, takes advantage of energy from the actual surface waves of the ocean. People have attempted to harness this power since 1890, but with little success. However, that may change thanks to BioPower Systems application of biomimicry.

The ideas underlying the company’s novel technologies reap the full benefit of billions of years of underwater evolution. The proposed bioWAVE ocean wave power system will sway like sea plants in ocean waves. Each lightweight unit—developed for 250kW, 500kW, 1000kW capacities—will then connect to a utility-size power grid via subsea cables. It’s now predicted that the same Californian waves that propel sundry surfers could generate between 10MW and 100MW of power. That’s enough energy to power between 3,000 to 30,000 homes annually.

If this project is indeed determined feasible—and it does look hopeful—BioPower Systems and the City of San Francisco will begin to develop a way to deliver clean renewable electricity to the city’s power grid. By 2012 that “hella rad swell” could be something electrifying.

Click here to view a full animation of the bioWAVE farm in action.

Advertisements

Read Full Post »

UPI, October 23, 2009

wave-ocean-blue-sea-water-white-foam-photoAustralian ocean energy company BioPower Systems announced it reached an agreement with the city of San Francisco to explore wave energy technology.

“The feasibility of ocean waves as an energy source is being considered and this could lead to further project development,” said John Doyle, acting manager of infrastructure at the San Francisco Public Utilities Commission.

BioPower will work with the San Francisco utility to examine the feasibility of a project site 5 miles off the coast of California. The project could generate between 10MW and 100MW of power, the company said.

The BioPower wave system, bioWAVE, generates 1MW of energy per unit. The company said it would install several units at an undersea wave energy farm that is out of view and environmentally friendly.

San Francisco and BioPower are working to bring wave energy to the power grid by 2012 pending results from a feasibility study.

“We have already assessed the potential for economic energy production using bioWAVE at the proposed project site, and the results are very promising,” said Tim Finnigan, chief executive officer at BioPower.

Read Full Post »

DAVID FOGARTY, Reuters Climate Change Correspondent, February 5, 2009

ceto-overview1For millennia, Australia’s rugged southern coast has been carved by the relentless action of waves crashing ashore.

The same wave energy could soon be harnessed to power towns and cities and trim Australia’s carbon emissions.

“Waves are already concentrated solar energy,” says Michael Ottaviano, who leads a Western Australian firm developing a method to turn wave power into electricity.

“The earth has been heated by the Sun, creating wind, which created the swells,” he told Reuters from Perth, saying wave power had the potential to supply all of Australia’s needs many times over.

Ottaviano heads Carnegie Corp, which has developed a method of using energy captured from passing waves to generate high-pressure sea water. This is piped onshore to drive a turbine and to create desalinated water.

A series of large buoys are tethered to piston pumps anchored in waters 15 to 50 metres deep (49 to 131 feet). The rise and fall of passing waves drives the pumps, generating water pressures of up to 1,000 pounds per square inch (psi).

This drives the turbine onshore and forces the water through a membrane that strips out the salt, creating fresh water in a process that normally requires a lot of electricity.

The CETO (named after a mythical Greek sea creature) pumps and buoys are located under water, differing from some other wave power methods, for example, those that sit on the surface.

The CETO concept was invented in the 1970s by a Western Australian businessman Alan Burns and initial development began in 1999, followed by completion of a working prototype by 2005.

Ottaviano says the company, which works in partnership with British-based wind farm developer Renewable Energy Holdings and French utility EDF, is in the process of selecting a site for its first commercial demonstration plant in Australia.

The 50 megawatt plant, enough to power a large town, would cost between A$300 million to A$400 million ($193 million to $257 million) and cover about 5 hectares (12.5 acres) of seabed.

Funding could be raised from existing or new shareholders, he believes.

Several sites in Western Australia, including Albany in the south and Garden Island off Perth, looked promising.

“There’s significant interest in these sorts of projects, even in the current financial environment,” he added.

And a 50 MW plant was just a drop in the ocean.

He pointed to a study commissioned by the company that said wave power had the potential to generate up to 500,000 MW of electricity along the southern half of Australia’s coast at depths greater than 50 metres (165 feet).

At shallower depths, the potential was 170,000 MW, or about four times Australia’s installed power generation capacity.

Interest in renewable energy in Australia and elsewhere is being driven by government policies that enshrine clean energy production targets as well as state-backed funding programmes for emerging clean-tech companies.

“Australia is going to be one of those markets because of what the government is doing to drive investment in this sector. For starters, there’s quite a bit of direct government funding for projects like this,” he said.

The federal government has also set a renewable energy target of 20% by 2020, which is expected to drive billions of dollars worth of investment in Australia over the next decade, with much of it going into wind farms.

A second company, BioPower Systems, is developing underwater wave and tidal power systems and expects to complete pilot projects off northern Tasmania this year.

The company’s bioWAVE system is anchored to the sea bed and generates electricity through the movement of buoyant blades as waves pass, in a swaying motion similar to the way sea plants, such as kelp, move.

Tidal power, in which electricity is generated by turbines spinning to the ebb and flow of tides, has not taken off in Australia, partly because of cost, but is expected to be a big provider of green power in Britain in coming years.

Last week, Britain announced five possible projects to generate power from a large tidal area in south-west England. The largest of the projects could generate 8,600 MW and cost 21 billion pounds ($29 billion).

CONSTANT

Ottaviano believes wave power is one of the few green technologies that can provide steady, or baseload power.

Wind and solar photovoltaic panels can only operate at 25 to 30% efficiencies because neither the wind nor the sun are permanently available.

Government policies should promote the development of technologies that delivered large-scale, high-availability clean power competitively, he said.

“If you look from an outcome point of view and leave it up to the market to work out how that is going to be achieved, it comes down to geothermal certainly being one of the potential technologies because (of) its high availability and also potentially cost-competitive and harnessable at large scale,” Ottaviano said.

Australia has large geothermal potential in remote central and northern areas.

“Wave is another logical one because it is high availability. It is 90 to 100% available in most sites around southern Australia.”

“You could power the country 10 times over.”

Read Full Post »

ROSS KENDALL, CleanTechnica.com, June 4, 2008

Biopower Systems is just one of the wave-energy developers gaining attention by meeting its technological goals and backing this up with investment support.

Last month Biopower Systems everything was in place to test a 250 kilowatt wave power system that should be capable of powering 500 homes on King Island off the south-east Australian coast. This followed news earlier in the year that the company had been able to raise over $11 million for funding the pilot project from both government and private sources.

For those waiting to get their hands on this exciting and clean technology the news is all good according to Biopower Systems’ Dr Tim Finnigan:

“The pilot programs will enable Biopower Systems to test and demonstrate our wave and tidal-current power conversion systems in situ, and to refine the design of the systems for use in commercial projects. We expect to begin commercial sales in 2010.”

Biopower’s wave technology is inspired by nature and mimics the swaying motion of sea plants; its buoyant and bulbous finger-like structures generate energy from their hydrodynamic interaction with ocean waves.

The company also has a tidal power generator is a technology based on mimicking swimming species such as sharks. The tailfin shaped device is fixed to the seabed of a tidal area and the passing water flow drives the resisting force of the generator.

CETO is Also Ready to Go

On the other side of the continent the Perth-based CETO Wave Energy is also mimicking nature to generate wave energy. The company is in the last year of a decade long development program and is currently looking for a site for its first large-scale commercial deployment.

CETO’s technology is also fixed to the sea-floor and harnesses passing wave energy to operate what is essentially a positive displacement pump. This drives seawater to the shore under high pressure where it is then fed into a standard hydro-electricity generator.

New Technology, New Benefits

The beauty of these wave-power technologies is that they move with the power of the ocean rather than putting themselves in confrontation with it, like the some of the other wave power systems do. These first-generation technologies are generally one large solid unit that will always be subject to freak wave activity.

The second-generation systems that operate under water not only get protected from the worst of a storm but are also smaller, lighter and modular units. Large-scale power supply is achieved by building up an array of the units to deliver the required power supply where it is required. Like other distributed systems, these types of wave-power technology reduce their risks by spreading them more widely.

For an island country like Australia where the vast majority of the populace lives near the coast, virtually eliminating power transmission costs, the advantages of this type of power are many.

Oceans of Resource

CETO’s managing director Michael Ottaviano says that the bottom half of the country, from Brisbane to Perth is well endowed with a consistent and sizeable wave resource. He estimates the untapped potential is 500,000 megawatts, ten times the country’s current installed power capacity.

For as long as I can remember a renewable energy resource capable of generating base-load power has seemed like a distant dream. In the few years we will know if wave technology has been able to step up and fulfill its promise. Either way it is good to know we are starting to work with nature rather than against it,

Read Full Post »