Feeds:
Posts
Comments

Archive for the ‘Energy’ Category

Laurel Krause, MendoCoastCurrent, September 10, 2011 ~ 9/10/11

PRESIDENT OBAMA promised on October 27, 2007: “I will promise you this, that if we have not gotten our troops out by the time I am President, it is the FIRST THING I will do. I will get our troops home. We will bring an end to this war. You can take that to the bank.”

On Peace

President Obama has been in office for 32 months and there are still 45,000 troops in Iraq and 100,000+ troops in Afghanistan.

When we voted for Obama we expected our future President to keep his word, not involve us in FOUR MORE WARS!

PRESIDENT OBAMA: You’re ON NOTICE ~ Next election Americans will come out in great numbers to vote for a peace-focused presidential candidate that will keep his word.

On Commercial-scale Renewable Energy

We felt validated that we voted for Obama when early in his presidency our President pledged to begin to develop safe, sustainable and renewable energy. We saw it as an excellent way to put the American workforce ‘back to work’ and begin to build a renewable energy future for America. Since then NOT ONE significant renewable or sustainable energy project has been created nor backed by the federal government. If there is one, please name it! The validation we felt back then has expired long ago into distrust and disrespect.

On the BP Gulf Oil Leak

Mostly based on watching our President minimize and shield his eyes (along with Energy Sec Chu) as the BP Oil Leak continues to leak and spew oil into the Gulf of Mexico, to this day. We are beyond disappointed that no significant or innovative remedial (as in clean up) action has been taken in the Gulf or poisoned coastal areas.

On Fukushima & Nuclear Reactors

Then we were shocked when our President in his address to the nation, moments after Fukushima went into melt-through in March 2011, disbelieving our President’s pledge of allegiance to more, new nuclear development in America. Except for President Obama’s corporate backers, the rest of us DO NOT WANT MORE NUCLEAR ENERGY REACTORS in the U.S. We demand our President begin to close down all U.S. nuclear reactors now, also a position very far from our President’s nuclear energy corporate BFF’s.

THE NATIVES ARE BECOMING RESTLESS MR. PRESIDENT!

PUT AMERICA BACK ON THE RIGHT TRACK

STEP 1) Immediately BRING ALL TROOPS HOME to be re-deployed in cleaning up the affected areas, as in making whole again, at the on-going BP Oil Leak in the Gulf of Mexico.

STEP 1-A ~ Fire & replace Energy Secretary Chu with a qualified, earth-friendly, safe renewable energy visionary.

STEP 2) Segment a significant portion of your new Jobs Bill towards sustainable and renewable energy R&D to create a VISION & PLAN FOR AMERICA to become the world leader in these new, safe technologies.

STEP 2-A ~ Consider and fund Mendocino Energy, a fast-tracked commercial-scale renewal/sustainable energy thinktank to get started TODAY. Learn more about Mendocino Energy ~ http://bit.ly/t7ov1

Mr President, let us live in peace on a healthy planet.

JOIN US, JOIN IN at the Peaceful Party: http://on.fb.me/hBvNE3

Advertisements

Read Full Post »

MendoCoastCurrent, June 24, 2010

Public institutions and private sector organizations from across the country should form a coalition to help states, localities and regions develop and deploy successful and cost-effective electric demand response programs, a new Federal Energy Regulatory Commission (FERC) staff report says.

The coalition effort is the centerpiece of the National Action Plan on Demand Response Report , issued today, that identifies strategies and activities to achieve the objectives of the Energy Independence and Security Act of 2007.

“There is strength in numbers. Coalitions harness the combined energy of individual organizations, producing results that can go far beyond what can be accomplished on an individual basis,” FERC Chairman Jon Wellinghoff said. “The success of this National Action Plan depends on all interested public and private supporters working to implement it.”

The public-private coalition outlined in the National Action Plan would coordinate and combine the efforts of state and local officials, utilities and demand response providers, regional wholesale power market operators, electricity consumers, the federal government and other interest groups. Demand response refers to the ability of customers to adjust their electricity use by responding to price signals, reliability concerns or signals from the grid operator. Demand response is a valuable resource for meeting the nation’s energy needs.

The 2007 law required FERC to identify the requirements for technical assistance to states so they can maximize the amount of demand response that can be developed and deployed; design and identify requirements for a national communications program that includes broad-based customer education and support; and develop or identify analytical tools, information, model regulations and contracts and other materials for use by customers, states, utilities and demand response providers.

The National Action Plan applies to the entire country, yet recognizes Congress’ intent that state and local governments play an important role in developing demand response. It is the result of more than two years of open, transparent consultation with all interested groups to help states, localities and regions develop demand response resources.

The National Action Plan on Demand Response is available at here.

Read Full Post »

May 22, 2010

The Federal Energy Regulatory Commission (FERC) and the State of California have signed a Memorandum of Understanding (MOU) to coordinate procedures and schedules for review of hydrokinetic energy projects off the California coast.

This marks the fourth hydrokinetics MOU that FERC has signed with other states, following agreements signed last year with Washington and Maine, and with Oregon in 2008. Today’s agreement ensures that FERC and California will undertake all permitting and licensing efforts in an environmentally sensitive manner, taking into account economic and cultural concerns.

“This agreement with California shows FERC’s continuing commitment to work with the states to ensure American consumers can enjoy the environmental and financial benefits of clean, renewable hydrokinetic energy,” FERC Chairman Jon Wellinghoff said.

“I am delighted the State of California has signed an MOU with the Commission on developing hydrokinetic projects off the California coast,” Commissioner Philip Moeller said. “This completes a sweep of the West Coast which, along with Maine, is showing its commitment to bringing the benefits of clean hydrokinetic energy to the consumers of the United States.”

FERC and California have agreed to the following with respect to hydrokinetics:

  • Each will notify the other when one becomes aware of a potential applicant for a preliminary permit, pilot project license or license;
  • When considering a license application, each will agree as early as possible on a schedule for processing. The schedule will include milestones, and FERC and California will encourage other federal agencies and stakeholders to comply with the schedules;
  • They will coordinate the environmental reviews of any proposed projects in California state waters. FERC and California also will consult with stakeholders, including project developers, on the design of studies and environmental matters; and
  • They will encourage applicants to seek pilot project licenses prior to a full commercial license, to allow for testing of devices before commercial deployment.

Read Full Post »

DAVID HELVARG, Los Angeles Times, April 4, 2010

President Obama’s decision to have Interior Secretary Ken Salazar open vast new areas of federal ocean waters to offshore oil drilling is no surprise. In his State of the Union address, the president explained that his vision for a clean energy future included offshore drilling, nuclear power and clean coal. Unfortunately, that’s like advocating a healthy diet based on fast-food snacking, amphetamines and low-tar cigarettes.

If the arguments you hear in the coming days for expanded drilling sound familiar, it’s because they’ve been repeated for generations. We’ve been hearing promises about safer drilling technologies since before Union Oil began drilling in the Santa Barbara Channel. And if you don’t remember what happened that time, you should. Soon after the wells were bored, one of them blew out in January 1969, causing a massive oil slick that slimed beaches and killed birds, fish and marine mammals. The resulting catastrophe helped spark the modern environmental movement.

The president has promised no new drilling off the West Coast, and it’s no wonder. Opposition was unified and vociferous during Salazar’s public hearing on offshore energy development in San Francisco in April 2009. More than 500 people – including Sen. Barbara Boxer, D-Calif., Gov. Ted Kulongoski of Oregon, California’s lieutenant governor and four House members – testified and rallied for clean energy and against any new oil drilling.

Boxer noted that the coast was a treasure and a huge economic asset “just as is,” generating $24 billion a year and 390,000 jobs.

Still, in the new Department of Interior announcement, one can hear echoes of President Reagan’s Interior secretary, Don Hodel, who warned us in the 1980s that if we didn’t expand offshore drilling, we’d be “putting ourselves at the tender mercies of OPEC.”

We did expand offshore drilling then, not off the stunning redwood coastline of Mendocino, Calif., as Hodel wanted, but where the oil industry knew most of the oil and gas actually was and is: in the deep waters of the Gulf of Mexico. We even created a royalty moratorium for the oil companies that went after those huge deep-water fields.

But offshore drilling has done little to wean us from Middle Eastern oil. And with less than 5% of our domestic oil located offshore, more ocean drilling won’t help now either.

The only real way to quit relying on foreign oil is to wean ourselves from oil, and that’s something our leaders are unlikely to fully embrace until we’ve tapped that last reserve of sweet crude.

Nor is it likely that oil-friendly politicians in Louisiana, Alaska and Virginia, where new drilling will take place under the Obama plan, are going to embrace administration-backed climate legislation that recognizes drilling as a temporary bridge to a post-fossil-fuel world.

The only real difference in the drilling debate from 30 years ago is that back then the issue was energy versus marine pollution. Today we know it’s even more urgent. Oil, used as directed, overheats the planet.

Plus, any new platform drilled is a structural commitment to at least 30 more years of fossil fuel extraction – assuming it’s not taken out by a big storm like the jack-up rig I saw washed onto the beach at Alabama’s Dauphin Island after Hurricane Katrina.

I’ve visited offshore oil rigs in the Santa Barbara Channel and the Gulf of Mexico and was impressed by the oil patch workers I met there. The innovative technologies they use for extracting ever more inaccessible reserves of oil and gas are also impressive.

But now we need to direct that can-do spirit of innovation to large-scale carbon-free energy systems, including photovoltaics, wind turbines, biomass, hydrogen fuel cells and marine tidal, wave, current and thermal energy. The difficulties of producing energy with those technologies will make today’s drilling challenges seem simple.

I respect the roughnecks and roustabouts I’ve met who continue to practice a dangerous and challenging craft, and the contribution they’ve made to our nation’s maritime history. But I believe it’s time for them to exit the energy stage. Apparently the president does not.

Read Full Post »

DAVID TOW, Future Planet, January 16, 2010

By 2015 India and China will both have outstripped the US in energy consumption by a large margin. Cap and Trade carbon markets will have been established by major developed economies, including India and China, as the most effective way to limit carbon emissions and encourage investment in renewable energy, reforestation projects etc.

There will have been a significant shift by consumers and industry to renewable energy technologies- around 25%, powered primarily by the new generation adaptive wind and solar energy mega-plants, combined with the rapid depletion of the most easily accessible oil fields. Coal and gas will continue to play a major role at around 60% useage, with clean coal and gas technologies still very expensive. Nuclear technology will remain static at 10% and hydro at 5%.

Most new vehicles and local transport systems will utilise advanced battery or hydrogen electric power technology, which will continue to improve energy density outputs.

Efficiency and recycling savings of the order of 30% on today’s levels will be available from the application of smart adaptive technologies in power grids, communication, distribution and transport networks, manufacturing plants and consumer households. This will be particularly critical for the sustainability of cities across the planet. Cities will also play a critical role in not only supporting the energy needs of at least 60% of the planet’s population through solar, wind, water and waste energy capture but will feed excess capacity to the major power grids, providing a constant re-balancing of energy supply across the world.

By 2025 a global Cap and Trade regime will be mandatory and operational worldwide. Current oil sources will be largely exhausted but the remaining new fields will be exploited in the Arctic, Antarctic and deep ocean locations.  Renewable energy will account for 40% of useage, including baseload power generation. Solar and wind power will dominate in the form of huge desert solar and coastal and inland wind farms; but all alternate forms- wave, geothermal, secondary biomass, algael etc will begin to play a significant role.

Safer helium-cooled and fast breeder fourth generation modular nuclear power reactors will replace many of the older water-cooled and risk-prone plants, eventually  accounting for around 15% of energy production; with significant advances in the storage of existing waste in stable ceramic materials.

By 2035 global warming will reach a critical threshold with energy useage tripling from levels in 2015, despite conservation and efficiency advances. Renewables will account for 60% of the world’s power supply, nuclear 15% and fossils 25%. Technologies to convert CO2 to hydocarbon fuel together with more efficient recycling and sequestration, will allow coal and gas to continue to play a significant role.

By 2045-50 renewables will be at 75-80% levels, nuclear 12% and clean fossil fuels 10-15%. The first Hydrogen and Helium3 pilot fusion energy plants will be commissioned, with large-scale generators expected to come on stream in the latter part of the century, eventually reducing carbon emissions to close to zero.

However the above advances will still be insufficient to prevent the runaway effects of global warming. These long-term impacts will raise temperatures well beyond the additional two-three degrees centigrade critical limit.

Despite reduction in emissions by up to 85%, irreversible and chaotic feedback impacts on the global biosphere will be apparent. These will be triggered by massive releases of methane from permafrost and ocean deposits, fresh water flows from melting ice causing disruptions to ocean currents and weather patterns.

These will affect populations beyond the levels of ferocity of the recent Arctic freeze, causing chaos in the northern hemisphere and reaching into India and China and the droughts and heat waves of Africa, the Middle East and Australia.

The cycle of extreme weather events and rising oceans that threaten to destroy many major coastal cities will continue to increase, compounded by major loss of ecosystems, biodiversity and food capacity. This will force a major rethink of the management of energy and climate change as global catastrophe threatens.

Increasingly desperate measures will be canvassed and tested, including the design of major geo-engineering projects aimed at reducing the amount of sunlight reaching earth and reversal of the acidity of the oceans. These massive infrastructure projects would have potentially enormous ripple-on effects on all social, industrial and economic systems. They are eventually assessed to be largely ineffective, unpredictable and unsustainable.

As forecasts confirm that carbon levels in the atmosphere will remain high for the next 1,000 years, regardless of mitigating measures, priorities shift urgently to the need to minimise risk to life on a global scale, while protecting civilisation’s core infrastructure, social, knowledge and cultural assets.

Preserving the surviving natural ecosystem environment and the critical infrastructure of the built environment, particularly the Internet and Web, will now be vital. The sustainability of human life on planet Earth, in the face of overwhelming catastrophe, will be dependent to a critical degree on the power of the intelligent Web 4.0, combining human and artificial intelligence to manage food, water, energy and human resources.

Only the enormous problem-solving capacity of this human-engineered entity, will be capable of ensuring the continuing survival of civilisation as we know it.

Read Full Post »

JESSICA MARSHALL, Discovery.com News, November 30, 2009

The patterns that schooling fish form to save energy while swimming have inspired a new wind farm design that researchers say will increase the amount of power produced per acre by at least tenfold.

“For the fish, they are trying to minimize the energy that they consume to swim from Point A to Point B,” said John Dabiri of the California Institute of Technology in Pasadena, who led the study. “In our case, we’re looking at the opposite problem: How to we maximize the amount of energy that we collect?”

“Because both of these problems involve optimizing energy, it turns out that the model that’s useful for one is also useful for the other problem.”

Both designs rely on individuals capturing energy from their neighbors to operate more efficiently.”If there was just one fish swimming, it kicks off energy into the water, and it just gets wasted,” Dabiri said, “but if there’s another fish behind, it can actually use that kinetic energy and help it propel itself forward.”

The wind turbines can do the same thing. Dabiri’s wind farm design uses wind turbines that are oriented to rotate around the support pole like a carousel, instead of twirling like a pinwheel the way typical wind turbines do.

Like the fish, these spinning turbines generate a swirling wake. The energy in this flow can be gathered by neighboring turbines if they are placed close enough together and in the right position. By capturing this wake, two turbines close together can generate more power than each acting alone.

This contrasts with common, pinwheel-style wind turbines where the wake from one interferes with its neighbors, reducing the neighbors’ efficiency. The vortexes occur in the wrong orientation for the neighboring turbines to capture them.

For this reason, such turbines must be spaced at least three diameters to either side and 10 diameters up — or downwind of another, which requires a lot of land.

Although individual carousel-style turbines are less efficient than their pinwheel-style counterparts, the close spacing that enhances their performance means that the amount of power output per acre is much greater for the carousel-style turbines.

Dabiri and graduate student Robert Whittlesey calculated that their best design would generate 100 times more power per acre than a conventional wind farm.

The model required some simplifications, however, so it remains to be seen whether tests of an actual wind farm produce such large gains. That will be the team’s next step. “Even if we’re off by a factor of 10, that’s still a game changer for the technology,” Dabiri noted.

In the end, schooling fish may not have the perfect arrangement. The pair found that the best arrangement of wind turbines did not match the spacing used by schooling fish.

“If we just mimic the fish wake, we can do pretty well,” Dabiri said. “But, as engineers, maybe we’re smarter than fish. It turns out that for this application there is even better performance to be had.”

This may be because fish have other needs to balance in their schooling behavior besides maximizing swimming efficiency. They seek food, avoid predators and reproduce, for example.

“I think that this is a very interesting possibility,” said Alexander Smits of Princeton University, who attended a presentation of the findings at a meeting of the American Physical Society Division of Fluid Dynamics in Minneapolis last week.

But a field test will show the idea’s real potential, he noted: “You have to go try these things. You can do a calculation like that and it might not work out. But it seemed like there was a very large reduction in the land usage, and even if you got one half of that, that would be pretty good.”

Read Full Post »

WENDEE HOLTCAMP, National Wildlife, December/January 2010

Frank Fish was browsing in a Boston sculpture shop a few years ago when he noticed a whale figurine. His first thought was, “This isn’t right. It’s got bumps on the leading edge of its flipper. It’s always a straight edge.”

Fish, a West Chester University professor specializing in the dynamics of locomotion, was surprised because all flippers he knew of had straight edges—including those of dolphins, penguins and even most whales. The straight-edge blade is also shared by ceiling fans and most industrial blades and rotors. But the store manager showed him a photo of a humpback whale, and sure enough, it had tubercles on its flippers. Humpbacks have a unique habit of catching fish in a bubble net that they create by diving deep and swimming in a spiraling circle, and Fish speculated that the tubercles may somehow give them a hydrodynamic advantage.

Turns out he was right. After testing a scaled-down flipper replica in a wind tunnel, Fish and colleagues Loren Howle and Mark Murray found the tubercles reduced drag by 32% and increased lift by 6% compared with a smooth-edge flipper. The bumps have the same effect on rotors and blades in air—a revolutionary discovery in aerodynamics. Fish co-patented so-called “Tubercle Technology” and in 2005 he helped found Whale Power, a company that is building energy-efficient windmills using scalloped-edge blades. The technology could eventually improve energy-efficiency for any machine that uses turbines, fans or pumps.

Fish is among an increasing number of scientists, inventors and companies turning to the natural world to help them create better, more sustainable products and to find solutions to some of humanity’s most vexing problems. The concept is called biomimicry and the idea behind it is simple: Over the millennia, living organisms in the natural world already have tested and solved many of the challenges humans are grappling with today.

“People are looking for ways to reduce material use, get away from toxic substances and reduce energy use. When they hear about biomimicry, they realize it’s an R&D program that’s been going on for 3.8 billion years,” says biologist Janine Benyus of the Biomimicry Guild, a Montana-based consulting firm that provides research and guidance on natural solutions for some of the country’s largest companies and government agencies.

In her landmark 1997 book Biomimicry: Innovation Inspired by Nature, Benyus issued a call to action, urging people to engage not just in shallow biomimicry—copying nature’s forms—but to push for deep biomimicry where manufacturing processes follow nature’s lead of sustainability. The ideal industrial loop, she says, would work as seamlessly as a redwood forest, where one’s processed wastes become food or input for another and nothing is wasted. In the book, Benyus also compiled dozens of examples of how people are emulating natural processes.

Velcro, for example, one of the most famous products to come from mimicking nature, was created by a Swiss engineer in the 1940s after observing how cockleburs got stuck in his dog’s fur. Three decades later, a German botanist discovered that lotus leaves contain tiny waxy bumps that cause water to bead up and run off the surface, washing and cleaning the leaves in the process. The discovery has since inspired a number of waterproof products including Lotusan, a self-cleaning paint that keeps the outsides of buildings free of algae and fungi.

More recently, scientists from the University of New South Wales discovered a revolutionary antibacterial compound in a type of red algal seaweed that lives off the coast of Australia. Bacteria form slimy biofilms but require a “quorum” to congregate, and so they constantly communicate with one another. The seaweed stays bacteria-free by emitting the compound furanone, which jams the bacteria’s communication sensors. Mimicking that natural action, the Australian company Biosignal created cleaning fluids that keep surfaces bacteria-free without killing them, which is a breakthrough because its use does not lead to the evolution of antibiotic resistance, as has happened with the proliferation of so many antibacterial cleaning compounds. So far, furanone works on various bacteria, including staphylococcus and vibrio, which causes cholera. It also works on the bacteria that corrode pipes, leading to oil spills.

In another flip on tradition, Mercedes-Benz recently modeled an ecologically friendly, fuel-efficient concept vehicle called the Bionic Car after the yellow boxfish, a squarish tropical creature found in reefs in the Pacific and Indian Oceans. Traditionally, aerodynamic cars have been built long and lean, but it turns out the boxfish has a drag coefficient nearly equal to that of a drop of water, which has one of the lowest drags possible. The automobile company not only borrowed from the boxfish’s boxy but aerodynamic shape but also from its unique skeletal structure that protects the animal from injury, making the car safer by putting extra material in certain parts of its frame and economizing by lightening up the load elsewhere.

Another product, the UltraCane, was developed not long ago as a result of research at the University of Leeds in Great Britain to help the blind “see” by utilizing the echolocation systems of bats. The cane emits an ultrasonic sound that bounces off objects, allowing vision-impaired people to develop a mental picture of where and how far away objects are—and hence better navigate around them.

In Zimbabwe, the architectural design firm Arup Associates modeled the country’s largest office complex, Eastgate Centre, after the passive cooling system used by African termites in their mounds. Termites farm fungus that they must keep at a precise 87 degrees F, while outside air varies from 35 degrees at night to 104 by day. To accomplish this amazing feat, termites constantly plug and unplug cooling vents that create convection currents, drawing air through the mound as needed. The Eastgate Centre builders copied this model, using fans and chimneys to shunt hot air out, and ground-level cavities to allow cooler air in—a concept known as passive cooling. Without any modern heating or air conditioning, the facility uses only 10% of the electricity of a conventional building its size. The energy-cost savings trickle down to tenants, who pay 20% lower rent than in neighboring buildings.

Elsewhere, scientists are turning to Mother Nature for inspiration for other energy-related materials. To increase the amount of sunlight that is absorbed by solar panels, for instance, a University of Florida researcher is developing a coating for the panels based on the structure of moth eyes, which reflect little light. In China and Japan, scientists are modeling more efficient solar cells after the scales on butterfly wings, which serve as highly effective, microscopic solar collectors.

The benefits humans gain as a result of such research provide a strong argument for conserving wildlife. “Protecting plant and animal habitats means also preserving the wellspring of ideas for the next industrial revolution,” says Benyus, who in 2007 was named by Time magazine as one of its “International Heroes of the Environment.”

That same year, she also founded the nonprofit Biomimicry Institute, which urges companies to donate a percentage of their profits to the habitat from which their biomimicry-inspired products come from. “We must become nature’s apprentice at this point,” she says, “and part of that path has to be preserving the wild places we now realize are the homes of geniuses.”

Read Full Post »

Older Posts »