Feeds:
Posts
Comments

Archive for the ‘Energy Efficiency’ Category

JENNIFER DART, Westerly News, June 3, 2010

Several groups working on wave energy on the British Columbia coast gathered in Ucluelet this week to discuss developments in the industry and update local projects.

Representatives from the non-profit Ocean Renewable Energy Group (OREG) chaired the community open house, held June 1 at the Ucluelet Community Centre.

Also in attendance were academics, developers, and representatives from all levels of government, including the Yuu-cluth-aht First Nation and the District of Ucluelet.

OREG executive director Chris Campbell said developing the technology to harness energy from the ocean is a “long, slow process,” but Canadian companies are active internationally, “so it’s gradually becoming more and more real.”

The Ucluelet/Tofino area has long been considered an ideal site for an ocean renewable energy project given its coastal location and proximity to the BC Hydro grid.

“Ocean renewable energy is something that’s been making rattling noises for quite a few years in our area,” said Ucluelet mayor Eric Russcher. “It would be a new and different world we live in but an exciting prospect for us all.”

According to information from OREG, preliminary studies indicate the wave energy potential off Canada’s Pacific Coast is equal to approximately half of Canada’s electricity consumption.

There seems to be a new energy behind wave power in recent months, given in part to new advances in technology, and also specifically in B.C. because of the Liberal government’s Clean Energy Act, which has been tabled in the legislature but has yet to be passed.

Jeff Turner from the Ministry of Energy, Mines and Petroleum Resources said the Act is meant to achieve energy efficiency while maintaining low rates, generate employment in the clean energy sector, and reduce greenhouse gas emissions.

While critics of the Act say it gives the province oversight on major projects like the Site C dam on the Peace River and could be mean higher hydro rates, the announcement has helped kick start development in areas like wave energy, where researchers are currently focused on pinpointing potential outputs.

Two wave energy projects are in development on the West Coast; one for the waters off Ucluelet and one in close proximity to the Hesquiaht communities at Hesquiaht Harbour and Hot Springs Cove.

John Gunton of SyncWave Systems Inc. presented his company’s plan for the SyncWave Power Resonator, a buoy class device that would be slack moored in depths of up to 200 metres. Simply put, this device captures energy from the upward and downward motion of the wave. Gunton said the company has provincial and federal funding, but is looking for a $3 million investment to complete its first two phases of development for placement near Hesquiaht Point.

A test resonator placed eight kilometres off Ucluelet in 40 metres of waters in December was collecting data for a period of about one month until a mast on it was destroyed. It was repaired, upgraded and redeployed in late April and a website will be set up by a group called the West Coast Wave Collaboration that is comprised of academics and industry representatives to transmit power data. Local partners in this project include the Ucluth Development Corporation, the District of Ucluelet and Black Rock Resort.

The other technology is a near shore device, placed in depths of 35 to 50 metres. The CETO device is owned by Carnegie Wave Energy of Australia, and was presented by David King at the open house. Seven metre cylinders capture wave energy and pump it to an onshore turbine. A government grant will also assist in the development of this technology.

But Jessica McIvoy of OREG said there are many questions left to be answered including what are the impacts on the ocean environment and sea life of such devices, and in turn how will the devices last in the ocean?

Campbell said an adaptive management approach to the technology seems like the best option to proceed with preliminary work, taking into account “critical indicators” in the natural environment.

Yuu-cluth-aht chief councillor Vi Mundy said she’s interested in these indicators after hearing concerns from her community, from fishers for example: “I’m hearing questions like what kind of impact will there be and what kind of standards have been developed so far [in the wave energy industry].”

But she also noted young people in her community are asking for green development that will provide year round employment.

“It’s really good to see that in young people,” Mundy said.

Anyone with questions about wave technology on the coast is invited to contact OREG at questions@oreg.ca.

Advertisements

Read Full Post »

Ukiah Daily, March 9, 2010

Cool Small Wind Device

Mendocino County, along with the counties of Sonoma, Lake, Humboldt, Del Norte, Trinity and Siskiyou will be receiving a $4.4 million grant from the California Energy Commission to initiate the proposed North Coast Energy Independence Program. The NCEIP is patterned after and represents an expansion of the Sonoma County Energy Independence Program. Implementation of the NCEIP will provide Mendocino County residents and businesses access to funding for residential and commercial energy efficiency and water conservation improvements, and stimulate the County’s economy through development of clean technology jobs.

The NCEIP will be implemented through the North Coast Integrated Regional Water Management Group, a coalition of Mendocino and six other North Coast counties. The NCIRWMG’s governance committee will serve as the principal contact with the California Energy Commission and administer the grant on behalf of the participating North Coast counties. Start-up and implementation of the NCEIP will occur within each county under direction of the respective County Board of Supervisors.

The North Coast and Sonoma County Energy Independence programs are the product of recent State legislation, Assembly Bill 811. Assembly bill 811 became law in 2008 and authorizes cities and counties to finance the installation of energy and water efficiency improvements to existing structures within a designated geographic area. Under AB 811, a city or county can loan money to property owners for the installation of permanent energy and water energy efficiency improvements, with the loan being repaid as a part of the property owner’s regular property tax payments. Repayment of the loan is tied to the property. Consequently, when the property changes ownership the loan repayment obligation automatically transfers to the new property owner.

Read Full Post »

DAVID TOW, Future Planet, January 16, 2010

By 2015 India and China will both have outstripped the US in energy consumption by a large margin. Cap and Trade carbon markets will have been established by major developed economies, including India and China, as the most effective way to limit carbon emissions and encourage investment in renewable energy, reforestation projects etc.

There will have been a significant shift by consumers and industry to renewable energy technologies- around 25%, powered primarily by the new generation adaptive wind and solar energy mega-plants, combined with the rapid depletion of the most easily accessible oil fields. Coal and gas will continue to play a major role at around 60% useage, with clean coal and gas technologies still very expensive. Nuclear technology will remain static at 10% and hydro at 5%.

Most new vehicles and local transport systems will utilise advanced battery or hydrogen electric power technology, which will continue to improve energy density outputs.

Efficiency and recycling savings of the order of 30% on today’s levels will be available from the application of smart adaptive technologies in power grids, communication, distribution and transport networks, manufacturing plants and consumer households. This will be particularly critical for the sustainability of cities across the planet. Cities will also play a critical role in not only supporting the energy needs of at least 60% of the planet’s population through solar, wind, water and waste energy capture but will feed excess capacity to the major power grids, providing a constant re-balancing of energy supply across the world.

By 2025 a global Cap and Trade regime will be mandatory and operational worldwide. Current oil sources will be largely exhausted but the remaining new fields will be exploited in the Arctic, Antarctic and deep ocean locations.  Renewable energy will account for 40% of useage, including baseload power generation. Solar and wind power will dominate in the form of huge desert solar and coastal and inland wind farms; but all alternate forms- wave, geothermal, secondary biomass, algael etc will begin to play a significant role.

Safer helium-cooled and fast breeder fourth generation modular nuclear power reactors will replace many of the older water-cooled and risk-prone plants, eventually  accounting for around 15% of energy production; with significant advances in the storage of existing waste in stable ceramic materials.

By 2035 global warming will reach a critical threshold with energy useage tripling from levels in 2015, despite conservation and efficiency advances. Renewables will account for 60% of the world’s power supply, nuclear 15% and fossils 25%. Technologies to convert CO2 to hydocarbon fuel together with more efficient recycling and sequestration, will allow coal and gas to continue to play a significant role.

By 2045-50 renewables will be at 75-80% levels, nuclear 12% and clean fossil fuels 10-15%. The first Hydrogen and Helium3 pilot fusion energy plants will be commissioned, with large-scale generators expected to come on stream in the latter part of the century, eventually reducing carbon emissions to close to zero.

However the above advances will still be insufficient to prevent the runaway effects of global warming. These long-term impacts will raise temperatures well beyond the additional two-three degrees centigrade critical limit.

Despite reduction in emissions by up to 85%, irreversible and chaotic feedback impacts on the global biosphere will be apparent. These will be triggered by massive releases of methane from permafrost and ocean deposits, fresh water flows from melting ice causing disruptions to ocean currents and weather patterns.

These will affect populations beyond the levels of ferocity of the recent Arctic freeze, causing chaos in the northern hemisphere and reaching into India and China and the droughts and heat waves of Africa, the Middle East and Australia.

The cycle of extreme weather events and rising oceans that threaten to destroy many major coastal cities will continue to increase, compounded by major loss of ecosystems, biodiversity and food capacity. This will force a major rethink of the management of energy and climate change as global catastrophe threatens.

Increasingly desperate measures will be canvassed and tested, including the design of major geo-engineering projects aimed at reducing the amount of sunlight reaching earth and reversal of the acidity of the oceans. These massive infrastructure projects would have potentially enormous ripple-on effects on all social, industrial and economic systems. They are eventually assessed to be largely ineffective, unpredictable and unsustainable.

As forecasts confirm that carbon levels in the atmosphere will remain high for the next 1,000 years, regardless of mitigating measures, priorities shift urgently to the need to minimise risk to life on a global scale, while protecting civilisation’s core infrastructure, social, knowledge and cultural assets.

Preserving the surviving natural ecosystem environment and the critical infrastructure of the built environment, particularly the Internet and Web, will now be vital. The sustainability of human life on planet Earth, in the face of overwhelming catastrophe, will be dependent to a critical degree on the power of the intelligent Web 4.0, combining human and artificial intelligence to manage food, water, energy and human resources.

Only the enormous problem-solving capacity of this human-engineered entity, will be capable of ensuring the continuing survival of civilisation as we know it.

Read Full Post »

JESSICA MARSHALL, Discovery.com News, November 30, 2009

The patterns that schooling fish form to save energy while swimming have inspired a new wind farm design that researchers say will increase the amount of power produced per acre by at least tenfold.

“For the fish, they are trying to minimize the energy that they consume to swim from Point A to Point B,” said John Dabiri of the California Institute of Technology in Pasadena, who led the study. “In our case, we’re looking at the opposite problem: How to we maximize the amount of energy that we collect?”

“Because both of these problems involve optimizing energy, it turns out that the model that’s useful for one is also useful for the other problem.”

Both designs rely on individuals capturing energy from their neighbors to operate more efficiently.”If there was just one fish swimming, it kicks off energy into the water, and it just gets wasted,” Dabiri said, “but if there’s another fish behind, it can actually use that kinetic energy and help it propel itself forward.”

The wind turbines can do the same thing. Dabiri’s wind farm design uses wind turbines that are oriented to rotate around the support pole like a carousel, instead of twirling like a pinwheel the way typical wind turbines do.

Like the fish, these spinning turbines generate a swirling wake. The energy in this flow can be gathered by neighboring turbines if they are placed close enough together and in the right position. By capturing this wake, two turbines close together can generate more power than each acting alone.

This contrasts with common, pinwheel-style wind turbines where the wake from one interferes with its neighbors, reducing the neighbors’ efficiency. The vortexes occur in the wrong orientation for the neighboring turbines to capture them.

For this reason, such turbines must be spaced at least three diameters to either side and 10 diameters up — or downwind of another, which requires a lot of land.

Although individual carousel-style turbines are less efficient than their pinwheel-style counterparts, the close spacing that enhances their performance means that the amount of power output per acre is much greater for the carousel-style turbines.

Dabiri and graduate student Robert Whittlesey calculated that their best design would generate 100 times more power per acre than a conventional wind farm.

The model required some simplifications, however, so it remains to be seen whether tests of an actual wind farm produce such large gains. That will be the team’s next step. “Even if we’re off by a factor of 10, that’s still a game changer for the technology,” Dabiri noted.

In the end, schooling fish may not have the perfect arrangement. The pair found that the best arrangement of wind turbines did not match the spacing used by schooling fish.

“If we just mimic the fish wake, we can do pretty well,” Dabiri said. “But, as engineers, maybe we’re smarter than fish. It turns out that for this application there is even better performance to be had.”

This may be because fish have other needs to balance in their schooling behavior besides maximizing swimming efficiency. They seek food, avoid predators and reproduce, for example.

“I think that this is a very interesting possibility,” said Alexander Smits of Princeton University, who attended a presentation of the findings at a meeting of the American Physical Society Division of Fluid Dynamics in Minneapolis last week.

But a field test will show the idea’s real potential, he noted: “You have to go try these things. You can do a calculation like that and it might not work out. But it seemed like there was a very large reduction in the land usage, and even if you got one half of that, that would be pretty good.”

Read Full Post »

WENDEE HOLTCAMP, National Wildlife, December/January 2010

Frank Fish was browsing in a Boston sculpture shop a few years ago when he noticed a whale figurine. His first thought was, “This isn’t right. It’s got bumps on the leading edge of its flipper. It’s always a straight edge.”

Fish, a West Chester University professor specializing in the dynamics of locomotion, was surprised because all flippers he knew of had straight edges—including those of dolphins, penguins and even most whales. The straight-edge blade is also shared by ceiling fans and most industrial blades and rotors. But the store manager showed him a photo of a humpback whale, and sure enough, it had tubercles on its flippers. Humpbacks have a unique habit of catching fish in a bubble net that they create by diving deep and swimming in a spiraling circle, and Fish speculated that the tubercles may somehow give them a hydrodynamic advantage.

Turns out he was right. After testing a scaled-down flipper replica in a wind tunnel, Fish and colleagues Loren Howle and Mark Murray found the tubercles reduced drag by 32% and increased lift by 6% compared with a smooth-edge flipper. The bumps have the same effect on rotors and blades in air—a revolutionary discovery in aerodynamics. Fish co-patented so-called “Tubercle Technology” and in 2005 he helped found Whale Power, a company that is building energy-efficient windmills using scalloped-edge blades. The technology could eventually improve energy-efficiency for any machine that uses turbines, fans or pumps.

Fish is among an increasing number of scientists, inventors and companies turning to the natural world to help them create better, more sustainable products and to find solutions to some of humanity’s most vexing problems. The concept is called biomimicry and the idea behind it is simple: Over the millennia, living organisms in the natural world already have tested and solved many of the challenges humans are grappling with today.

“People are looking for ways to reduce material use, get away from toxic substances and reduce energy use. When they hear about biomimicry, they realize it’s an R&D program that’s been going on for 3.8 billion years,” says biologist Janine Benyus of the Biomimicry Guild, a Montana-based consulting firm that provides research and guidance on natural solutions for some of the country’s largest companies and government agencies.

In her landmark 1997 book Biomimicry: Innovation Inspired by Nature, Benyus issued a call to action, urging people to engage not just in shallow biomimicry—copying nature’s forms—but to push for deep biomimicry where manufacturing processes follow nature’s lead of sustainability. The ideal industrial loop, she says, would work as seamlessly as a redwood forest, where one’s processed wastes become food or input for another and nothing is wasted. In the book, Benyus also compiled dozens of examples of how people are emulating natural processes.

Velcro, for example, one of the most famous products to come from mimicking nature, was created by a Swiss engineer in the 1940s after observing how cockleburs got stuck in his dog’s fur. Three decades later, a German botanist discovered that lotus leaves contain tiny waxy bumps that cause water to bead up and run off the surface, washing and cleaning the leaves in the process. The discovery has since inspired a number of waterproof products including Lotusan, a self-cleaning paint that keeps the outsides of buildings free of algae and fungi.

More recently, scientists from the University of New South Wales discovered a revolutionary antibacterial compound in a type of red algal seaweed that lives off the coast of Australia. Bacteria form slimy biofilms but require a “quorum” to congregate, and so they constantly communicate with one another. The seaweed stays bacteria-free by emitting the compound furanone, which jams the bacteria’s communication sensors. Mimicking that natural action, the Australian company Biosignal created cleaning fluids that keep surfaces bacteria-free without killing them, which is a breakthrough because its use does not lead to the evolution of antibiotic resistance, as has happened with the proliferation of so many antibacterial cleaning compounds. So far, furanone works on various bacteria, including staphylococcus and vibrio, which causes cholera. It also works on the bacteria that corrode pipes, leading to oil spills.

In another flip on tradition, Mercedes-Benz recently modeled an ecologically friendly, fuel-efficient concept vehicle called the Bionic Car after the yellow boxfish, a squarish tropical creature found in reefs in the Pacific and Indian Oceans. Traditionally, aerodynamic cars have been built long and lean, but it turns out the boxfish has a drag coefficient nearly equal to that of a drop of water, which has one of the lowest drags possible. The automobile company not only borrowed from the boxfish’s boxy but aerodynamic shape but also from its unique skeletal structure that protects the animal from injury, making the car safer by putting extra material in certain parts of its frame and economizing by lightening up the load elsewhere.

Another product, the UltraCane, was developed not long ago as a result of research at the University of Leeds in Great Britain to help the blind “see” by utilizing the echolocation systems of bats. The cane emits an ultrasonic sound that bounces off objects, allowing vision-impaired people to develop a mental picture of where and how far away objects are—and hence better navigate around them.

In Zimbabwe, the architectural design firm Arup Associates modeled the country’s largest office complex, Eastgate Centre, after the passive cooling system used by African termites in their mounds. Termites farm fungus that they must keep at a precise 87 degrees F, while outside air varies from 35 degrees at night to 104 by day. To accomplish this amazing feat, termites constantly plug and unplug cooling vents that create convection currents, drawing air through the mound as needed. The Eastgate Centre builders copied this model, using fans and chimneys to shunt hot air out, and ground-level cavities to allow cooler air in—a concept known as passive cooling. Without any modern heating or air conditioning, the facility uses only 10% of the electricity of a conventional building its size. The energy-cost savings trickle down to tenants, who pay 20% lower rent than in neighboring buildings.

Elsewhere, scientists are turning to Mother Nature for inspiration for other energy-related materials. To increase the amount of sunlight that is absorbed by solar panels, for instance, a University of Florida researcher is developing a coating for the panels based on the structure of moth eyes, which reflect little light. In China and Japan, scientists are modeling more efficient solar cells after the scales on butterfly wings, which serve as highly effective, microscopic solar collectors.

The benefits humans gain as a result of such research provide a strong argument for conserving wildlife. “Protecting plant and animal habitats means also preserving the wellspring of ideas for the next industrial revolution,” says Benyus, who in 2007 was named by Time magazine as one of its “International Heroes of the Environment.”

That same year, she also founded the nonprofit Biomimicry Institute, which urges companies to donate a percentage of their profits to the habitat from which their biomimicry-inspired products come from. “We must become nature’s apprentice at this point,” she says, “and part of that path has to be preserving the wild places we now realize are the homes of geniuses.”

Read Full Post »

Globe.Net, October 27, 2009

President Barack Obama has announced the largest single energy grid modernization investment in U.S. history, funding a broad range of technologies that will create tens of thousands of jobs, save energy and allow consumers to cut their electric bills.

Speaking at Florida Power and Light’s (FPL) DeSoto Next Generation Solar Energy Center, President Barack Obama today announced the largest single energy grid modernization investment in U.S. history, funding a broad range of technologies that will spur the nation’s transition to a smarter, stronger, more efficient and reliable electric system.

The $3.4 billion in grant awards – part of the American Reinvestment and Recovery Act – will be matched by industry funding for a total public-private investment worth over $8 billion. Full listings of the grant awards by category and state are available here and a map of the awards is available here.

An analysis by the Electric Power Research Institute (EPRI) estimates that the implementation of smart grid technologies could reduce electricity use by more than 4% by 2030.  That would mean a savings of $20.4 billion for businesses and consumers around the country. One-hundred private companies, utilities, manufacturers, cities and other partners received Smart Grid Investment Grant awards today, including FPL, which will use its $200 million in funding to install over 2.5 million smart meters and other technologies that will cut energy costs for its customers.

The awards announced represent the largest group of Recovery Act awards ever made in a single day and the largest batch of Recovery Act clean energy grant awards to-date. The announcements include:

  • Empowering Consumers to Save Energy and Cut Utility Bills — $1 billion. These investments will create the infrastructure and expand access to smart meters and customer systems so that consumers will be able to access dynamic pricing information and have the ability to save money by programming smart appliances and equipment to run when rates are lowest.
  • Making Electricity Distribution and Transmission More Efficient — $400 million. The Administration is funding several grid modernization projects across the country that will significantly reduce the amount of power that is wasted from the time it is produced at a power plant to the time it gets to your house.  By deploying digital monitoring devices and increasing grid automation, these awards will increase the efficiency, reliability and security of the system, and will help link up renewable energy resources with the electric grid.
  • Integrating and Crosscutting Across Different “Smart” Components of a Smart Grid — $2 billion. Much like electronic banking, the Smart Grid is not the sum total of its components but how those components work together.  The range of projects funded will incorporate various components into one system – including smart meters, smart thermostats and appliances, syncrophasors, automated substations, plug in hybrid electric vehicles, renewable energy sources, etc.
  • Building a Smart Grid Manufacturing Industry — $25 million. These investments will help expand our manufacturing base of companies that can produce the smart meters, smart appliances, synchrophasors, smart transformers, and other components for smart grid systems in the United States and around the world – representing a significant and growing export opportunity for our country and new jobs for American workers.

More details on the proposed projects are available here. Click here for the full test of remarks by President Obama on Recovery Act Funding for Smart Grid Technology.

Read Full Post »

Editor’s Note: To learn more about the Kent State Truth Tribunal 2010, please go to www.TruthTribunal.org and pre-register to participate as well as support us with your generous donation. Thanks!

From 1970 to 1980, Senator Kennedy was our single-best crusader from Congress in supporting my family’s attempts to learn the truth about the Kent State Massacre where my protesting sister, Allison Krause, was murdered. We grieve for Senator Kennedy and deeply thank him for always listening to our pain and working alongside my father, Arthur S. Krause, in his fight to have my sister’s death not be vain. Rest in peace, Senator Kennedy. Know that your compassion and tremendous life force had immense positive impact on my family and America.

BRIAN MERCHANT, Treehugger, August 26, 2009

edward-kennedy-green-tributeKennedy was a masterful politician and an effective, aggressive reformer–he was instrumental in shaping the policies, ideology, and face of modern America. More so, as Slate argues, than any other Kennedy. And though he may have more famous achievements (immigration reform, expanding health care, civil rights for the handicapped) he was also a champion of environmental causes. Here, we pay tribute to the less celebrated–but no less important–legacy of green achievements he left behind.

And it’s a pretty staggering list of achievements–from cosponsoring the first bill to put fuel economy standards in place, to tightening regulations on oil companies, to fighting to keep ANWR safe, to being an early proponent of renewable energy promotion, Kennedy has a long history of championing green causes and protecting the environment.

Here are some green highlights:

Holding Oil Companies Accountable During consideration of a 1975 tax cut proposal, Kennedy introduced a provision targeting the oil depletion allowance, which since 1926 had enabled oil producers to exclude 22 percent of their revenues from any taxes. Kennedy’s initiative passed overwhelmingly, trimming the allowance for independent producers and ending it for the major oil companies.

Raising Fuel Economy Standards

Senator Kennedy has a long and distinguished record supporting clean renewable sources of energy and reducing the nation’s reliance on fossil fuels. More than 30 years ago he cosponsored the first law to establish fuel economy standards. And in 2007, he supported a law which increased fuel economy standards, which is essential to cutting greenhouse gas emissions.

Improving Energy Efficiency

Senator Kennedy was a strong proponent of increasing energy efficiency, which is an essential part of reducing greenhouse gas emissions. He was a long time supporter of programs like the weatherization assistance program and the Low-Income Home Energy Assistance Program that helps those most in need reduce their energy bills by improving home energy efficiency.

Kennedy Fought to Cleanup Brownfields Sites and Revitalize Local Communities

In 2001, Senator Kennedy was a lead sponsor of the Brownfields Revitalization and Environmental Restoration Act, which authorized funds for assessment and cleanup of brownfield sites.

Of course, he did much more in his six terms as senator, but there’s not room to print the entire list here. But it’s safe to say that the US is a greener place thanks to his efforts. Ted Kennedy was one of the most powerful, respected, and influential senators in US history–his progressive vision and will be sorely missed.

Read Full Post »

Older Posts »