Feeds:
Posts
Comments

Archive for the ‘Sea Turbine’ Category

Scientific Computing, Advantage Business Media, November 2009

The ocean is a potentially vast source of electric power, yet as engineers test new technologies for capturing it, the devices are plagued by battering storms, limited efficiency and the need to be tethered to the seafloor. Now, a team of aerospace engineers is applying the principles that keep airplanes aloft to create a new wave energy system that is durable, extremely efficient and can be placed anywhere in the ocean, regardless of depth.

While still in early design stages, computer and scale model tests of the system suggest higher efficiencies than wind turbines. The system is designed to effectively cancel incoming waves, capturing their energy while flattening them out, providing an added application as a storm wave breaker.

The researchers, from the U.S. Air Force Academy, presented their design at the 62nd annual meeting of the American Physical Society’s Division of Fluid Dynamics on November 24, 2009.

“Our group was working on very basic research on feedback flow control for years,” says lead researcher Stefan Siegel, referring to efforts to use sensors and adjustable parts to control how fluids flow around airfoils like wings. “For an airplane, when you control that flow, you better control flight — for example, enabling you to land a plane on a shorter runway.”

A colleague had read an article on wave energy in a magazine and mentioned it to Siegel and the other team members, and they realized they could operate a wave energy device using the same feedback control concepts they had been developing.

Supported by a grant from the National Science Foundation, the researchers developed a system that uses lift instead of drag to cause the propeller blades to move.

“Every airplane flies with lift, not with drag,” says Siegel. “Compare an old style windmill with a modern one. The new style uses lift and is what made wind energy viable — and it doesn’t get shredded in a storm like an old windmill. Fluid dynamics fixed the issue for windmills, and can do the same for wave energy.”

Windmills have active controls that turn the blades to compensate for storm winds, eliminating lift when it is a risk, and preventing damage. The Air Force Academy researchers used the same approach with a hydrofoil (equivalent to an airfoil, but for water) and built it into a cycloidal propeller, a design that emerged in the 1930s and currently propels tugboats, ferries and other highly maneuverable ships.

The researchers changed the propeller orientation from horizontal to vertical, allowing direct interaction with the cyclic, up and down motion of wave energy. The researchers also developed individual control systems for each propeller blade, allowing sophisticated manipulations that maximize (or minimize, in the case of storms) interaction with wave energy.

Ultimately, the goal is to keep the flow direction and blade direction constant, cancelling the incoming wave and using standard gear-driven or direct-drive generators to convert the wave energy into electric energy. A propeller that is exactly out of phase with a wave will cancel that wave and maximize energy output. The cancellation also will allow the float-mounted devices to function without the need of mooring, important for deep sea locations that hold tremendous wave energy potential and are currently out of reach for many existing wave energy designs.

While the final device may be as large as 40 meters across, laboratory models are currently less than a meter in diameter. A larger version of the system will be tested next year at NSF’s Network for Earthquake Engineering Simulation (NEES) tsunami wave basin at Oregon State University, an important experiment for proving the efficacy of the design.

Compelling images of the cycloidal turbine:

The view from the far downstream end into the test section of the U.S. Air Force Academy water tunnel. Three blades of the cycloidal turbine are visible at the far end. Engineer Stefan Siegel and his colleagues test the turbine using the tunnel, with both steady and oscillating flow conditions simulating a shallow-water wave-flow field. Courtesy of SSgt Danny Washburn, U.S. Air Force Academy, Department of Aeronautics

 

A cycloidal turbine is installed on top of the test section of the U.S. Air Force Academy water tunnel. In the background, Manfred Meid (left) and Stefan Siegel (right) operate the turbine. Courtesy of SSgt Danny Washburn, US Air Force Academy, Department of Aeronautics

 

 

 

A cycloidal turbine prototype with three blades (translucent, at bottom of image), is shown lifted out of the tunnel. One of the blade pitch control servo amplifiers is visible in the foreground, and the servo motors can be seen in the top portion of the image. Courtesy of SSgt Danny Washburn, US Air Force Academy, Department of Aeronautics

Read Full Post »

RenewableEnergyFocus.com, November 25, 2009

The U.S. Department of Energy (DOE) will fund $18 million to support small business innovation research, development and deployment of clean and renewable energy technologies, including projects to advance wave and current energy technologies, ocean thermal energy conversion systems, and concentrating solar power (CSP) for distributed applications.

The funding will come from the American Recovery & Reinvestment Act and, in this first phase of funding, 125 grants of $150,000 each will be awarded to 107 small advanced technology firms across the United States for clean and renewable energy. The companies were selected from a pool of 950 applicants through a special fast-track process with an emphasis on near-term commercialization and job creation.

Companies which demonstrate successful results with their new clean and renewable technologies and show potential to meet market needs, will be eligible for $60m in a second round of grants in the summer of 2010.

“Small businesses are drivers of innovation and are crucial to the development of a competitive clean energy US economy,” says Energy Secretary Steven Chu. “These investments will help ensure small businesses are able to compete in the clean energy economy, creating jobs and developing new technologies to help decrease carbon pollution and increase energy efficiency.”

Grants were awarded in 10 clean and renewable energy topic areas, including $2.8m for 12 projects in Advanced Solar Technologies where projects will focus on achieving significant cost and performance improvements over current technologies, solar-powered systems that produce fuels, and concentrated solar power systems for distributed applications.

Another $1.7m will go to 12 clean and renewable energy projects in Advanced Water Power Technology Development where projects will focus on new approaches to wave and current energy technologies and ocean thermal energy conversion systems.

Other key areas are:

  • Water Usage in Electric Power Production (decreasing the water used in thermoelectric power generation and developing innovative approaches to desalination using Combined Heat and Power projects);
  • Advanced Building Air Conditioning and Cool Roofs (improve efficiency of air conditioning and refrigeration while reducing GHG emissions);
  • Power Plant Cooling (advanced heat exchange technology for power plant cooling);
    Smart Controllers for Smart Grid Applications (develop technologies to support electric vehicles and support of distributed energy generation systems);
  • Advanced Industrial Technologies Development (improve efficiency and environmental performance in the cement industry);
  • Advanced Manufacturing Processes (improving heat and energy losses in energy intensive manufacturing processes);
  • Advanced Gas Turbines and Materials (high performance materials for nuclear applications and novel designs for high-efficiency and low-cost distributed power systems); and
  • Sensors, Controls, and Wireless Networks (building applications to minimise power use and power line sensor systems for the smart grid).

Read Full Post »

NAO NAKANISHI, Reuters, October 5, 2009

PelamisWaveFarm_PelamisWavePowerA first attempt fell victim to the crisis: now in the docks of Scotland’s ancient capital, a second-generation scarlet Sea Snake is being prepared to harness the waves of Britain’s northern islands to generate electricity.

Dwarfed by 180 metres of tubing, scores of engineers clamber over the device, which is designed to dip and ride the swelling sea with each move being converted into power to be channelled through subsea cables.

Due to be installed next spring at the European Marine Energy Centre (EMEC) in Orkney, northern Scotland, the wave power generator was ordered by German power company E.ON, reflecting serious interest in an emerging technology which is much more expensive than offshore wind.

Interest from the utility companies is driven by regulatory requirements to cut carbon emissions from electricity generation, and it helps in a capital-intensive sector.

Venture capitalists interested in clean tech projects typically have shorter horizons for required returns than the 10-20 years such projects can take, so the utilities’ deeper pockets and solid capital base are useful.

“Our view … is this is a 2020 market place,” said Amaan Lafayette, E.ON’s marine development manager. “We would like to see a small-scale plant of our own in water in 2015-2017, built on what we are doing here. It’s a kind of generation we haven’t done before.”

The World Energy Council has estimated the market potential for wave energy at more than 2,000 terawatt hours a year — or about 10% of world electricity consumption — representing capital expenditure of more than 500 billion pounds ($790 billion).

Island nation Britain has a leading role in developing the technology for marine power, which government advisor the Carbon Trust says could in future account for 20% of the country’s electricity. The government is stepping up support as part of a 405 million pound investment in renewable energy to help its ambition of cutting carbon emissions by 80% by 2050 from 1990 levels, while securing energy supply. (The challenge is more about getting to a place where we are comparable with other renewable technologies… We want to get somewhere around offshore wind,” said Lafayette.)

Britain’s Crown Estate, which owns the seabed within 12 nautical miles of the coast, is also holding a competition for a commercial marine energy project in Pentland Firth in northern Scotland.

Besides wave power, Britain is testing systems to extract the energy from tides: private company Marine Current Turbines Ltd (MCT) last year opened the world’s first large-scale tidal turbine SeaGen in Northern Ireland.

DEVELOPING LIKE WIND

wave_power_pelamis“We are often compared to the wind industry 20 years ago,” said Andrew Scott, project development manager at Pelamis Wave Power Ltd, which is developing the Sea Snake system, known as P2. Standing beside the train-sized serpent, Pelamis’ Scott said wave power projects are taking a variety of forms, which he said was similar to the development of the wind turbine. “You had vertical axis, horizontal axis and every kind of shapes before the industry consolidated on what you know as acceptable average modern day turbines.”

The Edinburgh Snake follows a pioneering commercial wave power project the company set up in Portugal last September, out of action since the collapse of Australian-based infrastructure group Babcock & Brown which held a majority share. “It’s easy to develop your prototypes and models in the lab, but as soon as you put them in water, it swallows capital,” said John Liljelund, CEO of Finnish wave energy firm AW-Energy, which just received $4.4 million from the European Union to develop its WaveRoller concept in Portugal.

At present, industry executives say marine power costs about double that from offshore wind farms, which require investment of around 2-3 million euros per megawatt. Solar panels cost about 3-4 million per megawatt, and solar thermal mirror power about 5 million.

UTILITY ACTION

Other utility companies involved in wave power trials include Spain’s Iberdrola, which has a small experimental wave farm using floating buoys called “Power Take- offs” off the coast of northern Spain. It is examining sites for a subsea tidal turbine project made by Norwegian company Hammerfest Strom.

Countries developing the technology besides Britain include Portugal, Ireland, Spain, South Korea and the United States: about 100 companies are vying for a share of the market, but only a handful have tested their work in the ocean.

Privately owned Pelamis has focussed on wave energy since 1998, has its own full-scale factory in Leith dock and sees more orders for the second generation in prospect.

Lafayette said E.ON examined more than 100 devices since 2001 before picking Sea Snake for its first ocean project, a three-year test: “They have a demonstrable track record … and commercial focus and business focus.”

A single Sea Snake has capacity of 750 kilowatts: by around 2015, Pelamis hopes each unit will have capacity of 20 megawatts, or enough to power about 30,000 homes.

Neither Pelamis nor E.ON would elaborate on the cost of the Sea Snake, but they said the goal is to bring it down to the level of offshore wind farms.

Read Full Post »

JACKIE NOBLETT, Mass High Tech, August 18, 2009

wave-ocean-blue-sea-water-white-foam-photoMaine and the Federal Energy Regulatory Commission will cooperate on the application, review and permitting process for tidal energy projects after signing a memorandum of understanding Wednesday.

The MOU calls for the entities to notify each other when a tidal developer applies for a preliminary permit, pilot project license or license. They will coordinate their permitting schedules and take into account each entity’s specific needs and master plans.

FERC has signed similar agreements with Washington and Oregon, but it is the first agreement with a state on the East Coast.

The agreement came after a meeting between Maine Gov. John Baldacci and FERC Chairman Jon Wellinghoff in Washington, D.C., today.

Some 17 tidal projects had applied for FERC permits as of January 1, 1009, according to the Maine Department of Environmental Protection.

A collaboration between the University of Maine, Maine Maritime Academy and Portland-based Ocean Renewable Power Co., announced in April, has landed nearly $1 million in grant money from the federal government to research and develop tidal power in Maine.

Read Full Post »

PETER ASMUS, Pike Research, June 17, 2009

wave-ocean-blue-sea-water-white-foam-photoThe earth is the water planet, so it should come as no great surprise that forms of water power have been one of the world’s most popular “renewable” energy sources. Yet the largest water power source of all – the ocean that covers three-quarters of earth – has yet to be tapped in any major way for power generation. There are three primary reasons for this:

  • The first is the nature of the ocean itself, a powerful resource that cannot be privately owned like land that typically serves as the foundation for site control for terrestrial power plants of all kinds;
  • The second is funding. Hydropower was heavily subsidized during the Great Depression, but little public investment has since been steered toward marine renewables with the exception of ocean thermal technologies, which were perceived to be a failure.
  • The third reason why the ocean has not yet been industrialized on behalf of energy production is that the technologies, materials and construction techniques did not exist until now to harness this renewable energy resource in any meaningful and cost effective way.

Literally hundreds of technology designs from more than 100 firms are competing for attention as they push a variety emerging ocean renewable options. Most are smaller upstart firms, but a few larger players – Scottish Power, Lockheed Martin and Pacific Gas & Electric — are engaged and seeking new business opportunities in the marine renewables space. Oil companies Chevron, BP and Shell are also investing in the sector.

In the U.S., the clear frontrunner among device developers is Ocean Power Technologies (OPT). It was the first wave power company to issue successful IPOs through the London Stock Exchange’s AIM market for approximately $40 million and then another on the U.S. Stock Exchange in 2007 for $100 million. OPT has a long list of projects in the pipeline, including the first “commercial” installation in the U.S. in Reedsport, Oregon in 2010, which could lead to the first 50 MW wave farm in the U.S. A nearby site in Coos Bay, Oregon represents another potential 100 MW deployment.

While the total installed capacity of emerging “second generation” marine hydrokinetic resources – a category that includes wave, tidal stream, ocean current, ocean thermal and river hydrokinetic resources – was less than 10 MW at the end of 2008, a recent surge in interest in these new renewable options has generated a buzz, particularly in the United Kingdom, Ireland, the United States, Portugal, South Korea, Australia, New Zealand and Japan, among other countries. It is expected that within the next five to eight years, these emerging technologies will become commercialized to the point that they can begin competing for a share of the burgeoning market for carbon-free and non-polluting renewable resources.

The five technologies covered in a new report by Pike Research are the following:

  • Tidal stream turbines often look suspiciously like wind turbines placed underwater. Tidal projects comprise over 90 percent of today’s marine kinetic capacity totals, but the vast majority of this installed capacity relies upon first generation “barrage” systems still relying upon storage dams.
  • Wave energy technologies more often look more like metal snakes that can span nearly 500 feet, floating on the ocean’s surface horizontally, or generators that stand erect vertically akin to a buoy. Any western coastline in the world has wave energy potential.
  • River hydrokinetic technologies are also quite similar to tidal technologies, relying on the kinetic energy of moving water, which can be enhanced by tidal flows, particularly at the mouth of a river way interacting with a sea and/or ocean.
  • Ocean current technologies are similar to tidal energy technologies, only they can tap into deeper ocean currents that are located offshore. Less developed than either tidal or wave energy, ocean current technologies, nevertheless, are attracting more attention since the resource is 24/7.
  • Ocean thermal energy technologies take a very different approach to generating electricity, capturing energy from the differences in temperature between the ocean surface and lower depths, and can also deliver power 24/7.

While there is a common perception that the U.S. and much of the industrialized world has tapped out its hydropower resources, the Electric Power Research Institute (EPRI) disputes this claim. According to its assessment, the U.S. has the water resources to generate from 85,000 to 95,000 more megawatts (MW) from this non-carbon energy source, with 23,000 MW available by 2025. Included in this water power assessment are new emerging marine kinetic technologies. In fact, according to EPRI, ocean energy and hydrokinetic sources (which includes river hydrokinetic technologies) will nearly match conventional new hydropower at existing sites in new capacity additions in the U.S. between 2010 and 2025.

The UN projects that the total “technically exploitable” potential for waterpower (including marine renewables) is 15 trillion kilowatt-hours, equal to half of the projected global electricity use in the year 2030. Of this vast resource potential, roughly 15% has been developed so far. The UN and World Energy Council projects 250 GW of hydropower will be developed by 2030. If marine renewables capture just 10% of this forecasted hydropower capacity, that figure represents 25 GW, a figure Pike Research believes is a valid possibility and the likely floor on market scope.

The demand for energy worldwide will continue to grow at a dramatic clip between 2009 and 2025, with renewable energy sources overtaking natural gas as the second largest source behind coal by 2015 (IEA, 2008). By 2015, the marine renewable market share of this renewable energy growth will still be all but invisible as far as the IEA statistics are concerned, but development up to that point in time will determine whether these sources will contribute any substantial capacity by 2025. By 2015, Pike Research shows a potential of over 22 GW of all five technologies profiled in this report could come on-line. Two of the largest projects – a 14 GW tidal barrage in the U.K. and a 2.2 GW tidal fence in the Philippines — may never materialize, and/or will not likely be on-line by that date, leaving a net potential of more than 14 GW.

By 2025, at least 25 GW of total marine renewables will be developed globally. If effective carbon regulations in the U.S. are in place by 2010, and marine renewable targets established by various European governments are met, marine renewables and river hydrokinetic technologies could provide as much as 200 GW by 2025: 115 GW wave; 57 GW tidal stream; 20 GW tidal barrage; 4 GW ocean current; 3 GW river hydrokinetic; 1 GW OTEC.

About the author: Peter Asmus is an industry analyst with Pike Research and has been covering the energy sector for 20 years. His recent report on the ocean energy sector for Pike Research is now available, and more information can be found at http://www.pikeresearch.com. His new book, Introduction to Energy in California, is now available from the University of California Press (www.peterasmus.com).

Read Full Post »

JAMES RICKMAN, Seeking Alpha, June 8, 2009

wave-ocean-blue-sea-water-white-foam-photoOceans cover more than 70% of the Earth’s surface. As the world’s largest solar collectors, oceans generate thermal energy from the sun. They also produce mechanical energy from the tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives the tides, and the wind powers the ocean waves.

Wave energy is the capture of the power from waves on the surface of the ocean. It is one of the newer forms of renewable or ‘green’ energy under development, not as advanced as solar energy, fuel cells, wind energy, ethanol, geothermal companies, and flywheels. However, interest in wave energy is increasing and may be the wave of the future in coastal areas according to many sources including the International Energy Agency Implementing Agreement on Ocean Energy Systems (Report 2009).

Although fewer than 12 MW of ocean power capacity has been installed to date worldwide, we find a significant increase of investments reaching over $2 billion for R&D worldwide within the ocean power market including the development of commercial ocean wave power combination wind farms within the next three years.

Tidal turbines are a new technology that can be used in many tidal areas. They are basically wind turbines that can be located anywhere there is strong tidal flow. Because water is about 800 times denser than air, tidal turbines will have to be much sturdier than wind turbines. They will be heavier and more expensive to build but will be able to capture more energy. For example, in the U.S. Pacific Northwest region alone, it’s feasible that wave energy could produce 40–70 kilowatts (kW) per meter (3.3 feet) of western coastline. Renewable energy analysts believe there is enough energy in the ocean waves to provide up to 2 terawatts of electricity.

Companies to Watch in the Developing Wave Power Industry:

Siemens AG (SI) is a joint venture partner of Voith Siemens Hydro Power Generation, a leader in advanced hydro power technology and services, which owns Wavegen, Scotland’s first wave power company. Wavegen’s device is known as an oscillating water column, which is normally sited at the shoreline rather than in open water. A small facility is already connected to the Scottish power grid, and the company is working on another project in Northern Spain.

Ocean Power Technologies, Inc (OPTT) develops proprietary systems that generate electricity through ocean waves. Its PowerBuoy system is used to supply electricity to local and regional electric power grids. Iberdrola hired the company to build and operate a small wave power station off Santona, Spain, and is talking with French oil major Total (TOT) about another wave energy project off the French coast. It is also working on projects in England, Scotland, Hawaii, and Oregon.

Pelamis Wave Power, formerly known as Ocean Power Delivery, is a privately held company which has several owners including various venture capital funds, General Electric Energy (GE) and Norsk Hydro ADR (NHYDY.PK). Pelamis Wave Power is an excellent example of Scottish success in developing groundbreaking technology which may put Scotland at the forefront of Europe’s renewable revolution and create over 18,000 green high wage jobs in Scotland over the next decade. The Pelamis project is also being studied by Chevron (CVX).

Endesa SA ADS (ELEYY.PK) is a Spanish electric utility which is developing, in partnership with Pelamis, the world’s first full scale commercial wave power farm off Aguçadoura, Portugal which powers over 15,000 homes. A second phase of the project is now planned to increase the installed capacity from 2.25MW to 21MW using a further 25 Pelamis machines.

RWE AG ADR (RWEOY.PK) is a German management holding company with six divisions involved in power and energy. It is developing wave power stations in Siadar Bay on the Isle of Lewis off the coast of Scotland.

Australia’s Oceanlinx offers an oscillating wave column design and counts Germany’s largest power generator RWE as an investor. It has multiple projects in Australia and the U.S., as well as South Africa, Mexico, and Britain.

Alstom (AOMFF.PK) has also announced development in the promising but challenging field of capturing energy from waves and tides adding to the further interest from major renewable power developers in this emerging industry.

The U.S. Department of Energy has announced several wave energy developments including a cost-shared value of over $18 million, under the DOE’s competitive solicitation for Advanced Water Power Projects. The projects will advance commercial viability, cost-competitiveness, and market acceptance of new technologies that can harness renewable energy from oceans and rivers. The DOE has selected the following organizations and projects for grant awards:

First Topic Area: Technology Development (Up to $600,000 for up to two years)

Electric Power Research Institute, Inc (EPRI) (Palo Alto, Calif.) Fish-friendly hydropower turbine development & deployment. EPRI will address the additional developmental engineering required to prepare a more efficient and environmentally friendly hydropower turbine for the commercial market and allow it to compete with traditional designs.

Verdant Power Inc. (New York, N.Y.) Improved structure and fabrication of large, high-power kinetic hydropower systems rotors. Verdant will design, analyze, develop for manufacture, fabricate and thoroughly test an improved turbine blade design structure to allow for larger, higher-power and more cost-effective tidal power turbines.

Public Utility District #1 of Snohomish County (SnoPUD) (Everett, Wash.) Puget Sound Tidal Energy In-Water Testing and Development Project. SnoPUD will conduct in-water testing and demonstration of tidal flow technology as a first step toward potential construction of a commercial-scale power plant. The specific goal of this proposal is to complete engineering design and obtain construction approvals for a Puget Sound tidal pilot demonstration plant in the Admiralty Inlet region of the Sound.

Pacific Gas and Electric Company – San Francisco, Calif. WaveConnect Wave Energy In-Water Testing and Development Project. PG&E will complete engineering design, conduct baseline environmental studies, and submit all license construction and operation applications required for a wave energy demonstration plant for the Humboldt WaveConnect site in Northern California.

Concepts ETI, Inc (White River Junction, Vt.) Development and Demonstration of an Ocean Wave Converter (OWC) Power System. Concepts ETI will prepare detailed design, manufacturing and installation drawings of an OWC. They will then manufacture and install the system in Maui, Hawaii.

Lockheed Martin Corporation (LMT) – Manassas, Va., Advanced Composite Ocean Thermal Energy Conversion – “OTEC”, cold water pipe project. Lockheed Martin will validate manufacturing techniques for coldwater pipes critical to OTEC in order to help create a more cost-effective OTEC system.

Second Topic Area, Market Acceleration (Award size: up to $500,000)

Electric Power Research Institute (Palo Alto, Calif.) Wave Energy Resource Assessment and GIS Database for the U.S. EPRI will determine the naturally available resource base and the maximum practicable extractable wave energy resource in the U.S., as well as the annual electrical energy which could be produced by typical wave energy conversion devices from that resource.

Georgia Tech Research Corporation (Atlanta, Ga.) Assessment of Energy Production Potential from Tidal Streams in the U.S. Georgia Tech will utilize an advanced ocean circulation numerical model to predict tidal currents and compute both available and effective power densities for distribution to potential project developers and the general public.

Re Vision Consulting, LLC (Sacramento, Calif.) Best Siting Practices for Marine and Hydrokinetic Technologies With Respect to Environmental and Navigational Impacts. Re Vision will establish baseline, technology-based scenarios to identify potential concerns in the siting of marine and hydrokinetic energy devices, and to provide information and data to industry and regulators.

Pacific Energy Ventures, LLC (Portland, Ore.) Siting Protocol for Marine and Hydrokinetic Energy Projects. Pacific Energy Ventures will bring together a multi-disciplinary team in an iterative and collaborative process to develop, review, and recommend how emerging hydrokinetic technologies can be sited to minimize environmental impacts.

PCCI, Inc. (Alexandria, Va.) Marine and Hydrokinetic Renewable Energy Technologies: Identification of Potential Navigational Impacts and Mitigation Measures. PCCI will provide improved guidance to help developers understand how marine and hydrokinetic devices can be sited to minimize navigational impact and to expedite the U.S. Coast Guard review process.

Science Applications International Corporation (SAI) – San Diego, Calif., International Standards Development for Marine and Hydrokinetic Renewable Energy. SAIC will assist in the development of relevant marine and hydrokinetic energy industry standards, provide consistency and predictability to their development, and increase U.S. industry’s collaboration and representation in the development process.

Third Topic Area, National Marine Energy Centers (Award size: up to $1.25 million for up to five years)

Oregon State University, and University of Washington – Northwest National Marine Renewable Energy Center. OSU and UW will partner to develop the Northwest National Marine Renewable Energy Center with a full range of capabilities to support wave and tidal energy development for the U.S. Center activities are structured to: facilitate device commercialization, inform regulatory and policy decisions, and close key gaps in understanding.

University of Hawaii (Honolulu, Hawaii) National Renewable Marine Energy Center in Hawaii will facilitate the development and implementation of commercial wave energy systems and to assist the private sector in moving ocean thermal energy conversion systems beyond proof-of-concept to pre-commercialization, long-term testing.

Types of Hydro Turbines

There are two main types of hydro turbines: impulse and reaction. The type of hydropower turbine selected for a project is based on the height of standing water— the flow, or volume of water, at the site. Other deciding factors include how deep the turbine must be set, efficiency, and cost.

Impulse Turbines

The impulse turbine generally uses the velocity of the water to move the runner and discharges to atmospheric pressure. The water stream hits each bucket on the runner. There is no suction on the down side of the turbine, and the water flows out the bottom of the turbine housing after hitting the runner. An impulse turbine, for example Pelton or Cross-Flow is generally suitable for high head, low flow applications.

Reaction Turbines

A reaction turbine develops power from the combined action of pressure and moving water. The runner is placed directly in the water stream flowing over the blades rather than striking each individually. Reaction turbines include the Propeller, Bulb, Straflo, Tube, Kaplan, Francis or Kenetic are generally used for sites with lower head and higher flows than compared with the impulse turbines.

Types of Hydropower Plants

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not.

Many dams were built for other purposes and hydropower was added later. In the United States, there are about 80,000 dams of which only 2,400 produce power. The other dams are for recreation, stock/farm ponds, flood control, water supply, and irrigation. Hydropower plants range in size from small systems for a home or village to large projects producing electricity for utilities.

Impoundment

The most common type of hydroelectric power plant (above image) is an impoundment facility. An impoundment facility, typically a large hydropower system, uses a dam to store river water in a reservoir. Water released from the reservoir flows through a turbine, spinning it, which in turn activates a generator to produce electricity. The water may be released either to meet changing electricity needs or to maintain a constant reservoir level.

The Future of Ocean and Wave Energy

Wave energy devices extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in the ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

Wave energy rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, Japan, Australia, and the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it’s feasible that wave energy could produce 40–70 kilowatts (kW) per meter (3.3 feet) of western coastline. The West Coast of the United States is more than a 1,000 miles long.
In general, careful site selection is the key to keeping the environmental impacts of wave energy systems to a minimum. Wave energy system planners can choose sites that preserve scenic shorefronts. They also can avoid areas where wave energy systems can significantly alter flow patterns of sediment on the ocean floor.

Economically, wave energy systems are just beginning to compete with traditional power sources. However, the costs to produce wave energy are quickly coming down. Some European experts predict that wave power devices will soon find lucrative niche markets. Once built, they have low operation and maintenance costs because the fuel they use — seawater — is FREE.

The current cost of wave energy vs. traditional electric power sources?

It has been estimated that improving technology and economies of scale will allow wave generators to produce electricity at a cost comparable to wind-driven turbines, which produce energy at about 4.5 cents kWh.

For now, the best wave generator technology in place in the United Kingdom is producing energy at an average projected/assessed cost of 6.7 cents kWh.

In comparison, electricity generated by large scale coal burning power plants costs about 2.6 cents per kilowatt-hour. Combined-cycle natural gas turbine technology, the primary source of new electric power capacity is about 3 cents per kilowatt hour or higher. It is not unusual to average costs of 5 cents per kilowatt-hour and up for municipal utilities districts.

Currently, the United States, Brazil, Europe, Scotland, Germany, Portugal, Canada and France all lead the developing wave energy industry that will return 30% growth or more for the next five years.

Read Full Post »

LES BLUMENTHAL, The Bellingham Herald, May 30, 2009

wave-ocean-blue-sea-water-white-foam-photoThe Obama administration has proposed a 25% cut in the research and development budget for one of the most promising renewable energy sources in the Northwest – wave and tidal energy. At the same time the White House sought an 82% increase in solar power research funding, a 36% increase in wind power funding and a 14% increase in geothermal funding. But it looked to cut wave and tidal research funding from $40 million to $30 million.

The decision to cut funding came only weeks after the Interior Department suggested that wave power could emerge as the leading offshore energy source in the Northwest and at a time when efforts to develop tidal power in Puget Sound are attracting national and international attention. By some estimates, wave and tidal power could eventually meet 10% of the nation’s electricity demand, about the same as hydropower currently delivers.

Some experts have estimated that if only 0.2% of energy in ocean waves could be harnessed, the power produced would be enough to supply the entire world. In addition to Puget Sound and the Northwest coast, tidal and wave generators have been installed, planned or talked about in New York’s East River, in Maine, Alaska, off Atlantic City, N.J., and Hawaii. However, they’d generate only small amounts of power.

The Europeans are leaders when it comes to tidal and wave energy, with projects considered, planned or installed in Spain, Portugal, Scotland, Ireland and Norway. There have also been discussions about projects in South Korea, the Philippines, India and Canada’s Maritime provinces.

The proposed cut, part of the president’s budget submitted to Congress, has disappointed Sen. Patty Murray, D-Wash. “Wave and tidal power holds great promise in helping to meet America’s long-term energy needs,” Murray said, adding that Washington state is a leader in its development. “It’s time for the Department of Energy to focus on this potential. But playing budget games won’t get the work done.” Murray’s staff said that while $16.8 billion in the recently passed stimulus bill is reserved for renewable energy and energy efficiency, none of it is earmarked for wave and tidal power.

Energy Department spokesman Tom Welch, however, said the Obama administration is asking for 10 times more for tidal and wave power than the Bush administration did. “The trend line is up,” Welch said. “The department is collaborating with industry, regulators and other stakeholders to develop water resources, including conventional hydro.”

Murray sees it differently. Congress appropriated $40 million for the current year, so the Obama administration proposal actually would cut funding by a fourth. Utility officials involved in developing tidal energy sources said the administration’s approach was shortsighted. “We need all the tools in the tool belt,” said Steve Klein, general manager of the Snohomish County Public Utility District. “It’s dangerous to anoint certain sources and ignore others.”

The Snohomish PUD could have a pilot plant using three tidal generators installed on a seabed in Puget Sound in 2011. The tidal generators, built by an Irish company, are 50 feet tall and can spin either way depending on the direction of the tides. The units will be submerged, with 80 feet of clearance from their tops to the water’s surface. They’ll be placed outside of shipping channels and ferry routes. The pilot plant is expected to produce one megawatt of electricity, or enough to power about 700 homes. If the pilot plant proves successful, the utility would consider installing a project that powered 10,000 homes.

“A lot of people are watching us,” Klein said. The Navy, under pressure from Congress to generate 25% of its power from renewable sources by 2025, will install a pilot tidal generating project in Puget Sound near Port Townsend next year.

In Washington state, law requires that the larger utilities obtain 15% of their electricity from renewable sources by 2020. The law sets up interim targets of 3% by 2012 and 9% by 2016. Most of the attention so far has focused on developing large wind farms east of the Cascade Mountains. Because wind blows intermittently, however, the region also needs a more reliable source of alternative energy.

Tidal and wave fit that need. Also, at least with tidal, the generators would be closer to population centers than the wind turbines in eastern Washington. “The potential is significant and (tidal and wave) could accomplish a large fraction of the renewable energy portfolio for the state,” said Charles Brandt, director of the Pacific Northwest National Laboratory’s marine sciences lab in Sequim.

Read Full Post »

H. JOSEF HEBERT, AP/StarTribune, April 22, 2009

dept_of_interior_seal

Washington D.C. — The Interior Department issued long-awaited regulations on April 22, 2009 governing offshore renewable energy projects that would tap wind, ocean currents and waves to produce electricity.

The framework establishes how leases will be issued and sets in place revenue sharing with nearby coastal states that will receive 27.5% of the royalties that will be generated from the electricity production.

Interior Secretary Ken Salazar said in an interview that applications are expected for dozens of proposed offshore wind projects, many off the north and central Atlantic in the coming months. “This will open the gates for them to move forward … It sets the rules of the road,” Salazer said.

Actual lease approvals will take longer.

Salazar said he expects the first electricity production from some of the offshore projects in two or three years, probably off the Atlantic Coast.

President Barack Obama, marking Earth Day during an appearances in Iowa, welcomed “the bold steps toward opening America’s oceans and new energy frontier.”

The offshore leasing rules for electricity production from wind, ocean currents and tidal waves had stalled for two years because of a jurisdictional dispute between the Interior Department and the Federal Energy Regulatory Commission over responsibility for ocean current projects.

That disagreement was resolved earlier this month in a memorandum of understanding signed by Salazar and FERC Chairman Jon Wellinghoff.

The department’s Minerals Management Service will control offshore wind and solar projects and issue leases and easements for wave and ocean current energy development. The energy regulatory agency will issue licenses for building and operating wave and ocean current projects.

Salazar repeatedly has championed the development of offshore wind turbine-generated energy, especially off the central Atlantic Coast where the potential for wind as an electricity source is believe to be huge.

He said he has had numerous requests from governors and senators from Atlantic Coastal states to move forward with offshore wind development. State are interested in not only the close availability of wind-generated electricity for the populous Northeast, but also the potential for additional state revenue.

“We expect there will be significant revenue that will be generated,” Salazar said.

Under the framework nearby coastal states would receive 27.5% and the federal government the rest.

Currently there is a proposal for a wind farm off Nantucket Sound, Mass., known as Cape Wind, which has been under review separately from the regulation announced Wednesday. The Interior Department said no decision has been made on the Cape Wind project, but if it is approved it will be subject to the terms of the new rules.

Read Full Post »

Editor’s Note:  On September 21, 2009 FERC Commissioner Suedeen Kelly declined a nomination to serve a second term on the panel. Kelly, a Democratic commissioner nominated by President Obama, said she was leaving her post for the private sector.  A FERC spokeswoman said Kelly would remain in her seat until Congress adjourns later this year.

In her tenure, Kelly has overseen the development of commercial scale renewable energy, the expansion of bid-based regional auction markets for electricity, growth in natural gas pipelines and storage and the birth of the smart grid.

“It is time for me to move on and pursue opportunities to advance these objectives in the private sector,” Kelly said in a statement.

The Senate has still yet to confirm another FERC nominee, John Norris. If the Senate fails to confirm Norris and replace Kelly before it adjourns, it will have only three commissioners sitting: two Republican and one Democrat.

MendoCoastCurrent, March 20, 2009

President Barack Obama has designated Jon Wellinghoff as chairman of the Federal Energy Regulatory Commission (FERC), a position he has held on an acting basis since January.

Wellinghoff is one of two Democrats on the five-member FERC commission.  Separately, the White House said Obama will nominate Commissioner Suedeen Kelly, the panel’s other Democrat, to a third term. Wellinghoff has been on the commission since 2006 and Kelly since 2003.

The Senate confirms commission members, but the president may name its chairman without Senate action.

Here’s the Obama Administration’s FERC Team:

comm_mem

Chairman Jon Wellinghoff, Commissioner Suedeen G. Kelly, Commissioner Philip D. Moeller, Commissioner Marc Spitzer

Read Full Post »

Cherry Creek News Staff, March 17, 2009

WASHINGTON, DC – In a joint statement issued today Secretary of the Interior (DOI), Ken Salazar and Acting Chairman of the Federal Energy Regulatory Commission (FERC) Jon Wellinghoff announced that the two agencies have confirmed their intent to work together to facilitate the permitting of renewable energy in offshore waters.

“Our renewable energy is too important for bureaucratic turf battles to slow down our progress. I am proud that we have reached an agreement with the Federal Energy Regulatory Commission regarding our respective roles in approving offshore renewable energy projects. This agreement will help sweep aside red tape so that our country can capture the great power of wave, tidal, wind and solar power off our coasts,” Secretary Salazar said.

“FERC is pleased to be working with the Department of the Interior and Secretary Salazar on a procedure that will help get renewable energy projects off the drawing board and onto the Outer Continental Shelf,” Acting FERC Chairman Jon Wellinghoff said.

Below is the joint Statement between DOI and FERC signed by Secretary Salazar and Acting Chairmain Wellinghoff:

JOINT STATEMENT BY THE SECRETARY OF THE INTERIOR AND THE ACTING CHAIRMAN OF THE FEDERAL ENERGY REGULATORY COMMISSION ON THE DEVELOPMENT OF RENEWABLE ENERGY RESOURCES ON THE OUTER CONTINENTAL SHELF

The United States has significant renewable energy resources in offshore waters, including wind energy, solar energy, and wave and ocean current energy.

Under the Outer Continental Shelf Lands Act, the Secretary of the Interior, acting through the Minerals Management Service, has the authority to grant leases, easements, and rights-of-way on the outer continental shelf for the development of oil and gas resources. The Energy Policy Act of 2005 amended the Outer Continental Shelf Lands Act to provide the Interior Department with parallel permitting authority with regard to the production, transportation, or transmission of energy from additional sources of energy on the outer continental shelf, including renewable energy sources.

The Interior Department’s responsibility for the permitting and development of renewable energy resources on the outer continental shelf is broad. In particular, the Department of the Interior has permitting and development authority over wind power projects that use offshore resources beyond state waters.

Interior’s authority does not diminish existing responsibilities that other agencies have with regard to the outer continental shelf. In that regard, under the Federal Power Act, the Federal Energy Regulatory Commission has the statutory responsibility to oversee the development of hydropower resources in navigable waters of the United States. “Hydrokinetic” power potentially can be developed offshore through new technologies that seek to convert wave, tidal and ocean current energy to electricity. FERC will have the primary responsibility to manage the licensing of such projects in offshore waters pursuant to the Federal Power Act, using procedures developed for hydropower licenses, and with the active involvement of relevant federal land and resource agencies, including the Department of the Interior.

We have requested our staffs to prepare a short Memorandum of Understanding that sets forth these principles, and which describes the process by which permits and licenses related to renewable energy resources in offshore waters will be developed.

Read Full Post »

MendoCoastCurrent, March 17, 2009

Here’s a map indicating the measurement of wave energy flux around the world:  

Average Annual Wave Energy Flux (kW/m)

Average Annual Wave Energy Flux (kW/m)

From March 2009 Greentech Innovations Report.

Read Full Post »

MARSHA W. JOHNSTON, RenewableEnergyWorld.com, March 2009

One hundred and forty-one years ago, the relentless sea off Scotland’s coast inspired the following observation from native son and author George MacDonald:

I climbed the heights above the village, and looked abroad over the Atlantic. What a waste of aimless tossing to and fro! Gray mist above, full of falling rain; gray, wrathful waters underneath, foaming and bursting as billow broke upon billow…they burst on the rocks at the end of it, and rushed in shattered spouts and clouds of spray far into the air over their heads. “Will the time ever come,” I thought, when man shall be able to store up even this force for his own ends? Who can tell.”

In the United States, permitting may be an even bigger hurdle to marine energy deployment than financing. Between 25 and 35 different U.S. federal, state and local regulatory agencies claim some jurisdiction over marine power deployment. In the UK, two agencies handle permitting.

Today, we can certainly say, “Yes, the time will come.” The only question remaining is how long it will be before humankind routinely and widely uses electricity generated from the kinetic power of ocean tides, currents and waves.

If one defines “commercial ocean energy” as several tens of megawatts, the world cannot yet boast a commercial ocean energy installation. Indeed, only two installations of either wave, tidal or in-stream current devices are grid-connected and can generate over 1 megawatt (MW) of power. One is Pelamis Wave Power’s 2.25-MW Aguçadoura project off of Portugal’s northern coast and the other is Bristol-based Marine Current Turbines’ (MCT) SeaGen, a US $20-million commercial-scale tidal-energy project under development in Northern Ireland’s turbulent Strangford Narrows. In December, SeaGen boasted the first tidal turbine to hit a capacity of 1.2 MW.

(The biggest exception to commercial ocean energy production is the world’s longest running tidal power plant, the 240-MW La Rance, in France. But the plant’s barrage technology, which traps water behind a dam and releases it at low tide, has fallen out of favor due to its perceived higher environmental impact than underwater turbines. Nova Scotia has also been operating a 20-MW barrage Tidal Generating Station in the tidal-rich Bay of Fundy since 1984.)

The rest of the world’s wave, tidal and current installations, some of which have been in the water as far back as the 1990s, are experimental and prototype units ranging in size from 35 kilowatts (kW) to 400 kW. Because these units operate only intermittently and are not typically connected to any grid, it is not possible to determine their total power generation.

Many of these units are prototype demonstration units for the much bigger installations that are under development and that will begin to realize significant exploitation of the world’s ocean energy resource. For example, Ocean Power Technologies Inc. will use the 150-kW PowerBuoy it has been testing since the mid-90s as the “workhorse” for the 270-MW, four-site wave energy plant off California and Oregon coasts that it has partnered with Lockheed Martin to develop, says CEO George Taylor.

And Inverness, Scotland-based WaveGen expects to use 40 units of the 100-kw turbine it just installed off the Island of Islay for a 4-MW farm off of Scotland’s Isle of Lewis. Meanwhile, Pelamis says if its 750-kw “sea snake” devices, which were installed last year, make it through the winter, it will put 37 more of them in the water, generating 30 MW.

All of the wave, tidal, ocean and river current power around North America that can be practically extracted could together provide 10% of today’s electrical consumption in the U.S., says Roger Bedard, ocean energy leader at the Electric Power Research Institute (EPRI) in Palo Alto, CA. He adds that the total water resource could, it is sometimes said, possibly power the world twice over, but a lot of it is out of reach. “Hudson’s Bay, off the Arctic Circle, has HUGE tidal power, but it is thousands of miles from where anyone lives. We have HUGE wave resources off Aleutian Islands, but the same problem,” he says.  See EPRI’s U.S. Offshore Wave Energy Resource Map, below.

What will be the “magic” year for large-scale ocean energy deployment? Most developers indicate 2011-2012. Trey Taylor, co-founder and president of Verdant Power, which is moving into the commercial development phase of its 7-year-old Roosevelt Island Tidal Energy project, says the firm aims to have “at least 35 MW” in the water by the end of 2011.

Bedard is more circumspect. “I think it will be 2015 in Europe and 2025 in U.S. for big deployment,” he says, adding that the year cited depends entirely on the definition of “big” and “commercial,” which he defines as “many tens of megawatts.”

Verdant’s Taylor expects greater initial success in Canada. “The fundamental difference between Canada and the U.S. is that the underpinning of processes in Canada is collaborative and in the U.S. it is adversarial. It’s just the nature of Canadians, collaborating for community good, whereas in the U.S. people are afraid of being sued,” he said.

Bedard says the U.S. could catch up to Europe earlier, if the Obama Administration walks its big renewable energy infrastructure investment talk. “But if it’s business as usual, it could be later, depending on the economy,” he says.

Since the global economy began to melt down last September, many ocean energy companies have had to refocus their investment plans. With venture capital and institutional monies drying or dried up, firms are turning to public funds, strategic partners such as utilities and big engineering firms, and angel investors.

In November, MCT retained London-based Cavendish Corp Finance to seek new financing. Raymond Fagan, the Cavendish partner charged with MCT, said although tidal energy is not as advanced as wind or solar, he has seen a “strong level of interest so far from large engineering-type firms in MCT’s leading position.” Because MCT holds patents and is delivering power to the grid ahead of its competitors, Fagan thinks Cavendish can bring it together with such strategic partners.

In addition to the economic climate, he notes that the drop in oil and gas prices is further slowing renewable energy investment decisions. “Six to 12 months ago, people were leaping into renewable energy opportunities,” he says, adding that the UK government’s recent call for marine energy proposals for the enormous Pentland Firth zone north of Scotland will improve Cavendish’s chances of getting financing. Though it has yet to make a public announcement, MCT is widely viewed as a prime operator for the zone.

Monies are still available. Witness Pelamis Wave Power’s infusion of 5 million pounds sterling in November, which it says it will use for ongoing investment in core R&D and continuing development of its manufacturing processes and facilities.

In the U.S., permitting may be an even bigger hurdle to marine energy deployment than financing. Between 25 and 35 different U.S. federal, state and local regulatory agencies claim some jurisdiction over marine power deployment. In the UK, two agencies handle permitting. Bedard notes however, that streamlining the process in the U.S. may have begun with the recent opening of a new six-month process for licensing pilot marine energy plants.

Marine energy experts agree that there are more opportunities for wave power than for tidal, as there are simply fewer exploitable tidal sites. In technology terms, however, tidal turbines have benefited from a quarter century of wind turbine development, says Virginia Tech professor George Hagerman. Despite more widely available wave resource, wave energy developers face the challenge of needing many more devices than do tidal energy developers, and have a higher cabling cost to export the power.

As Christopher Barry, co-chair of the Ocean Renewable Energy panel at the Society of Naval Architects and Marine Engineers, explains: “The major challenge [to ocean energy] is not pure technology, but the side issues of power export and making the technology affordable and survivable.”

Read Full Post »

PETER BROWN, EnergyCurrent.com, February 16, 2009

stromnessOn a Monday morning in May last year, the Atlantic tide set a turbine in motion on the seabed off Orkney, and the energy captured was connected to the national grid. It was, said Jim Mather, Scotland’s Minister for Enterprise, Energy and Tourism, a “massive step forward”.

The amount of electricity generated may have been tiny, but for marine engineers the significance was huge. Their industry had stopped paddling and started to swim.

For small companies trying to get wave or tide devices off the drawing board and into the sea, many problems lie in wait. All turbines, whether they sit on the seabed or float, must withstand that once-in-a-century wave that could be a thousand times more powerful than the average. Conditions vary with the seasons and the seabed. A device that works in a fjord might not function in a firth. Rigorous, long-term testing is therefore vital.

“There are parallels with wind,” says Alan Mortimer, head of renewables policy at Scottish Power. “Many different types of turbine were proposed in the early Eighties. They boiled down to a small number of successful concepts. The same needs to happen with marine devices, but the difference is that they need to be full- size just to be tested.

“To get a reasonable number of prototypes into the water costs millions. What these small companies need is capital support.”

That, however, is hard to find. The Wave and Tidal Energy Support Scheme (Wates), which put GBP13.5 million into promising technologies, is now closed. Last year the Scottish Government offered the 10m Saltire Prize for a commercially viable scheme, but the Institution of Mechanical Engineers (IMechE), in its recent report Marine Energy: More Than Just a Drop in the Ocean?, called on the Government to provide another 40m.

This would go towards schemes to be tested at EMEC, the European Marine Energy Centre, which has two supported sites, with grid access, at Orkney. It was there that an Irish company, OpenHydro, made the grid breakthrough last year. “It’s desperately important that we grasp the nettle now,” says William Banks, IMechE’s president. “We have the micro-systems in place and I’d like to see them developed to the macro stage. However, unless we do that step by step, we’ll be in trouble.”

An estimated 50 teams are working around the world on marine energy. The danger is that Britain, and Scotland in particular, could lose the race, even though, as Alex Salmond, Scotland’s First Minister, says, “Scotland has a marine energy resource which is unrivalled in Europe.”

Scotland has a quarter of Europe’s tidal resources and a tenth of its wave potential.

Around 1,000 people work in Scottish marine energy, but that figure could billow. “You’re talking about an exercise that could transform the marine industry into something equivalent to oil and gas,” says Martin McAdam, whose company, Aquamarine Power, is growing fast.

Among his rivals in Scotland are AWS Ocean Energy, based near Inverness, with Archimedes, a submerged wave machine; Hammerfest UK, which wants to develop three 60MW tidal sites and is working with Scottish Power; Pelamis Wave Power, who are based in Edinburgh; and Scotrenewables, based in Orkney, who are currently developing a floating tidal turbine.

Politicians need to be educated about marine energy’s potential, says Banks. Indeed, IMechE has highlighted the need for sustained political leadership if what many see as the biggest problem – that of the grid – is to be solved. Why bring energy onshore if it can’t then reach homes?

“Grids were built to connect large power stations to cities. Now you’re going to have electricity generated all over the countryside. It’s a huge challenge,” says McAdam.

“We have had meetings with Ofgen and the national grid companies and we’re outlining the need to have grids to support at least 3,000MW of energy by 2020. That is definitely possible.” McAdam adds: “A European undersea grid is also being promoted and we’re very supportive of that.”

Such a system would help to overcome a frequent objection to renewables – their fickleness. If waves were strong in Scotland, Finland or France could benefit, and vice versa.

Another challenge is the cost of installation. “At the moment we’re competing with oil and gas for boats,” says McAdam. “We need to move away from using heavy-lift, jack-up vessels.” The answer might be devices that can be floated into position and then weighted down.

The race between suppliers is speeding up. Permission for a 4MW station at Siadar, off Lewis in the Western Isles, has just been granted to Wavegen, based in Inverness, and Npower Renewables. It could power about 1,500 homes, creating 70 jobs.

Among the success stories are the three 140-metre, red tubes developed by Pelamis (named after a sea serpent) which already float off the northern Portuguese coast at Aguadoura. More Pelamis turbines are to be installed at EMEC, along with Aquamarine’s wave device Oyster.

Oyster is basically a giant flap which feeds wave energy onshore to be converted to electricity. It has already been made, at a former oil and gas plant at Nigg, north of Inverness. A high- pressure pipeline was completed in December and a hydro-electric station will be installed this spring. In the summer, Oyster will finally be bolted to piles hammered into the seabed.

Unlike wave energy, tidal power needs a channel between two land masses – and in the roaring Pentland Firth, between Caithness and Orkney, Scotland has what has been called “the Saudi Arabia of marine power”, Europe’s largest tidal resource. To exploit it, a GBP2 million contract to build Aquamarine’s tidal power device, Neptune, was awarded last month. It will be tested at EMEC.

Elsewhere, SeaGen, an “underwater windmill” developed by a Bristol company, has just generated 1.2MW near the mouth of Strangford Lough, Northern Ireland.
But the most controversial of Britain’s tidal energy schemes is, of course, in the Severn Estuary, where a barrage could provide around 5% of Britain’s energy. Environmentalists fear irreparable damage to marshes and mudflats, but the Government is known to prefer the barrage to other, smaller options. The decision it takes next year is sure to be eagerly watched in Scotland.

Somewhat overshadowed by the Severn plan is Wave Hub, a project to build a wave-power station 10 miles off St Ives, on Cornwall’s north coast, using both Pelamis and a sea-bed device developed by ORECon of Plymouth. An application to create a safety area around it has just been submitted, part of the meticulous planning that precedes any marine trial.

“We have to have environmentalists looking at the impact on fisheries, flora and fauna,” says McAdam. “And we have to be completely open with the communities we’re going into. But most people realise that climate change and energy security are real things. We want to minimalise our environmental impact and give the country a means of isolating itself from the volatility of oil and gas.”

In theory, marine energy could generate a fifth of the UK’s electricity needs, but that would require a multitude of stations. Bill Banks believes nuclear power will be needed. “But we also need a variety of renewables,” he says. “Marine will take its place along with bio, hydro and wind energy. It’s available, it’s there at the moment, and if we get our act together I think we can lead Europe. We need a synergy of activity.”

Read Full Post »

DAVID EWENCHIEF, The Evening Express, February 11, 2009

images2The Aberdeenshire Council has pointed to tides – rather than wind turbines – as the best green solution to the energy crisis. The council took part in a consultation on the Scottish Government’s Climate Change Bill, which is going through Parliament, suggesting tide and current generation would be more reliable than wind turbines. “Wind cannot take up the slack. And we have a fair amount of coastline to play with,” a report said.

Aberdeenshire council suggested mini hydro-electric schemes on its rivers could also be more effective than wind turbines. Nearly 200 wind turbines have already been approved in the Northeast.

Mervyn Newberry, former chairman of the Skelmonae Windfarm Action Group, said he was not surprised at Aberdeenshire council’s sudden change of heart over the wind turbines. “It is completely expected,” he said. “The politicians just go with whatever is popular at the time. Though I am not as familiar with tidal energy, I am certainly more in favour of this form of energy because it doesn’t destroy the environment.”

Tarves, in Aberdeenshire, has been hit with a proposal for four wind turbines. Chairman of Tarves Community Council Bob Davidson claimed Aberdeenshire Council has been inconsistent in backing wind turbines. “I would not be surprised at inconsistency from the local authority,” he said.

Today Aberdeenshire Council boss Anne Robertson defended the use of wind turbines. She pointed out that tide technology has lagged behind wind-based technology in the North-east. Mrs Robertson stressed that the impact of wind turbines on the landscape was always considered. She said: “The wind turbine issue is one that has been dealt with through the planning process. “There have been quite a number of schemes turned down in Aberdeenshire.”

In its response to the bill consultation, Aberdeen City Council stressed the “importance of joint working” to reduce energy consumption. Wind turbines planned for Aberdeen Bay could supply all of the city’s houses with electricity.

Aberdeen-based Green Ocean Energy Ltd is developing a wave-based energy system to work alongside wind turbines. The Scottish Government rules on planning projects at sea.

Read Full Post »

MATTHEW MCDERMOTT, Treehuger.com, February 10, 2009

3268992893_da741f3657Based off the Aberdeen, Scotland-based company’s Ocean Treader, the Wave Treader is designed to mount onto the tower of an offshore wind turbine.

The Wave Treader concept utilizes the arms and sponsons from Ocean Treader and instead of reacting against a floating spar buoy, will react through an interface structure onto the foundation of an offshore wind turbine. Between the arms and the interface structure hydraulic cylinders are mounted and as the wave passes the machine first the forward sponson will lift and fall and then the aft sponson will lift and fall each stroking their hydraulic cylinder in turn. This pressurizes hydraulic fluid which is then smoothed by hydraulic accumulators before driving a hydraulic motor which in turn drives an electricity generator. The electricity is then exported through the cable shared with the wind turbine.

Each Wave Treader is rated at 500kW and can turn to face into the waves to ensure optimal power generation. The first full-size prototype is expected to be built later this year, with commercial versions being made available in 2011.

Read Full Post »

DAVID FOGARTY, Reuters Climate Change Correspondent, February 5, 2009

ceto-overview1For millennia, Australia’s rugged southern coast has been carved by the relentless action of waves crashing ashore.

The same wave energy could soon be harnessed to power towns and cities and trim Australia’s carbon emissions.

“Waves are already concentrated solar energy,” says Michael Ottaviano, who leads a Western Australian firm developing a method to turn wave power into electricity.

“The earth has been heated by the Sun, creating wind, which created the swells,” he told Reuters from Perth, saying wave power had the potential to supply all of Australia’s needs many times over.

Ottaviano heads Carnegie Corp, which has developed a method of using energy captured from passing waves to generate high-pressure sea water. This is piped onshore to drive a turbine and to create desalinated water.

A series of large buoys are tethered to piston pumps anchored in waters 15 to 50 metres deep (49 to 131 feet). The rise and fall of passing waves drives the pumps, generating water pressures of up to 1,000 pounds per square inch (psi).

This drives the turbine onshore and forces the water through a membrane that strips out the salt, creating fresh water in a process that normally requires a lot of electricity.

The CETO (named after a mythical Greek sea creature) pumps and buoys are located under water, differing from some other wave power methods, for example, those that sit on the surface.

The CETO concept was invented in the 1970s by a Western Australian businessman Alan Burns and initial development began in 1999, followed by completion of a working prototype by 2005.

Ottaviano says the company, which works in partnership with British-based wind farm developer Renewable Energy Holdings and French utility EDF, is in the process of selecting a site for its first commercial demonstration plant in Australia.

The 50 megawatt plant, enough to power a large town, would cost between A$300 million to A$400 million ($193 million to $257 million) and cover about 5 hectares (12.5 acres) of seabed.

Funding could be raised from existing or new shareholders, he believes.

Several sites in Western Australia, including Albany in the south and Garden Island off Perth, looked promising.

“There’s significant interest in these sorts of projects, even in the current financial environment,” he added.

And a 50 MW plant was just a drop in the ocean.

He pointed to a study commissioned by the company that said wave power had the potential to generate up to 500,000 MW of electricity along the southern half of Australia’s coast at depths greater than 50 metres (165 feet).

At shallower depths, the potential was 170,000 MW, or about four times Australia’s installed power generation capacity.

Interest in renewable energy in Australia and elsewhere is being driven by government policies that enshrine clean energy production targets as well as state-backed funding programmes for emerging clean-tech companies.

“Australia is going to be one of those markets because of what the government is doing to drive investment in this sector. For starters, there’s quite a bit of direct government funding for projects like this,” he said.

The federal government has also set a renewable energy target of 20% by 2020, which is expected to drive billions of dollars worth of investment in Australia over the next decade, with much of it going into wind farms.

A second company, BioPower Systems, is developing underwater wave and tidal power systems and expects to complete pilot projects off northern Tasmania this year.

The company’s bioWAVE system is anchored to the sea bed and generates electricity through the movement of buoyant blades as waves pass, in a swaying motion similar to the way sea plants, such as kelp, move.

Tidal power, in which electricity is generated by turbines spinning to the ebb and flow of tides, has not taken off in Australia, partly because of cost, but is expected to be a big provider of green power in Britain in coming years.

Last week, Britain announced five possible projects to generate power from a large tidal area in south-west England. The largest of the projects could generate 8,600 MW and cost 21 billion pounds ($29 billion).

CONSTANT

Ottaviano believes wave power is one of the few green technologies that can provide steady, or baseload power.

Wind and solar photovoltaic panels can only operate at 25 to 30% efficiencies because neither the wind nor the sun are permanently available.

Government policies should promote the development of technologies that delivered large-scale, high-availability clean power competitively, he said.

“If you look from an outcome point of view and leave it up to the market to work out how that is going to be achieved, it comes down to geothermal certainly being one of the potential technologies because (of) its high availability and also potentially cost-competitive and harnessable at large scale,” Ottaviano said.

Australia has large geothermal potential in remote central and northern areas.

“Wave is another logical one because it is high availability. It is 90 to 100% available in most sites around southern Australia.”

“You could power the country 10 times over.”

Read Full Post »

Bloomberg via The Economic Times, February 2, 2009

corrannarrowsl_901581LONDON: Three decades ago, engineer Peter Fraenkel created an underwater turbine to use river power to pump water in Sudan, where he worked for a charity. Civil war and a lack of funding stymied his plans. Now, his modified design generates electricity from tides off Northern Ireland.

“In the 1970s, the big snag was the market for that technology consisted of people with no money,” said Fraenkel, the 67-year-old co-founder of closely-held Marine Current Turbines. “Now it’s clear governments are gagging for new renewable energy technology.”

MCT last year installed the world’s biggest grid-connected tidal power station in Strangford Lough, an Irish Sea inlet southeast of Belfast. The SeaGen project’s two turbines, which cost 2.5 million pounds ($3.6 million), can produce as much as 1.2 megawatts of electricity, enough to power 1,140 homes. The company is one of more than 30 trying to tap tidal currents around the world, six years after the first project sent power to the grid.

Investors may pump 2.5 billion pounds into similar plants in Europe by 2020 as the European Union offers incentives for projects that don’t release carbon dioxide, the gas primarily blamed for global warming. In the US, President Barack Obama plans to increase tax breaks for renewable energy.

“Tidal energy has an enormous future, and the UK has a great resource” if construction costs come down, said Hugo Chandler, renewable energy analyst at the Paris-based International Energy Agency, which advises 28 nations. “It’s time may be just around the corner.”

While tides are a free source of energy, generating power from them is three times more expensive than using natural gas or coal over the life of a project, according to the Carbon Trust, a UK government-funded research unit.

Including capital expenses, fuel and maintenance, UK tidal current power costs 15 pence per kilowatt hour, compared with 5 pence for coal and gas and 7 pence for wind, the trust says.

Designing equipment to survive in salty, corrosive water and installing it in fast-moving currents boosts startup costs, said MCT Managing Director Martin Wright, who founded the Bristol, England-based company with Fraenkel in 2002. MCT raised 30 million pounds for SeaGen and pilot projects, he said, declining to break out the expenses.

Gearboxes and generators have to be watertight. The machinery must withstand flows up to 9.3 knots (10.7 mph) in Strangford Lough, which exert three times the force of projects that harness wind at similar speeds, Fraenkel said.

“The forces you’re trying to tap into are your enemy when it comes to engineering the structure,” said Angela Robotham, MCT’s 54-year-old engineering chief.

The project consists of a 41-meter (135-foot) tower with a 29-meter crossbeam that is raised from the sea for maintenance. Attached to the beam are two rotors to capture incoming and outgoing flows. The turbines convert the energy from tidal flows into electricity, differing from more established “tidal range” technology that uses the rise and fall of water.

Positioned between the North Sea and Atlantic Ocean, the British Isles have about 15% of the world’s usable tidal current resources, which could generate 5% of domestic electricity demand, the Carbon Trust estimates. Including wave power, the ocean may eventually meet 20 percent of the UK’s energy needs, the government said in June.

OpenHydro, a closely held Dublin company, linked a donut-shaped device with less than a quarter of the capacity of SeaGen to the grid at the European Marine Energy Centre in Orkney, Scotland, last May.

Read Full Post »

RenewableEnergyWorld.com, January 27, 2009 

One Choice

One Option on the Shortlist

A shortlist of proposed plans to generate electricity from the power of the tides in the Severn estuary has been unveiled by the UK Department of Energy and Climate Change.

UK Energy and Climate Change Secretary Ed Miliband has also announced £500,000 [US $702,000] of new funding to further develop early-stage technologies like tidal reefs and fences. The progress of these technologies will be considered before decisions are taken whether to go ahead with a Severn tidal power scheme.

The tides in the Severn estuary are the second highest in the world. The largest proposal being taken forward has the potential to generate nearly 5% of the UK’s electricity from this domestic, low carbon and sustainable source.

Over the past year, the Government-led feasibility study has been investigating a list of ten options, gathering information on the costs, benefits and environmental challenges of using the estuary to generate power.

The proposed shortlist is includes:       

  • Cardiff Weston Barrage: A barrage crossing the Severn estuary from Brean Down, near Weston super Mare to Lavernock Point, near Cardiff. Its estimated capacity is over 8.6 gigawatts (GW).
  • Shoots Barrage: Further upstream of the Cardiff Weston scheme. Capacity of 1.05 GW, similar to a large fossil fuel plant.
  • Beachley Barrage: The smallest barrage on the proposed shortlist, just above the Wye River. It could generate 625 MW.
  • Bridgwater Bay Lagoon: Lagoons are radical new proposals which impound a section of the estuary without damming it. This plan is sited on the English shore between east of Hinkley Point and Weston super Mare. It could generate 1.36 GW.
  • Fleming Lagoon: An impoundment on the Welsh shore of the estuary between Newport and the Severn road crossings. It too could generate 1.36 GW.The proposed shortlist will now be subject to a three month public consultation which begins this week.

“Fighting climate change is the biggest long term challenge we face and we must look to use the UK’s own natural resources to generate clean, green electricity. The Severn estuary has massive potential to help achieve our climate change and renewable energy targets. We want to see how that potential compares against the other options for meeting our goals,” said UK Energy and Climate Change Secretary Ed Miliband.

Read Full Post »

MendoCoastCurrent, January 23, 2009

Marine Current Turbines Ltd, the Bristol based UK tidal energy company, in now in partnership Canada’s Minas Basin Pulp and Power Company Ltd to demonstrate and develop tidal power technology and facilities in Canada’s Bay of Fundy, Nova Scotia. Minas Basin Pulp and Power Company Limited (MBPP) of Hantsport, Nova Scotia is a leading sustainable energy and resources company.

Working in partnership with MBPP, Marine Current Turbines (MCT) will participate in the tidal power demonstration centre established by the Province of Nova Scotia. MBPP and MCT intend to deploy a 1.5MW tidal generator when the in-stream tidal energy centre enters full operation and is connected to the Nova Scotia grid. 

MCT installed the world’s first offshore tidal current device in 2003 off the south west coast of England (the 300kW SeaFlow) and during 2008, it installed and commissioned its 1.2MW SeaGen commercial prototype tidal current turbine in Strangford Narrows in Northern Ireland. SeaGen generated at its full output of 1.2MW onto the local grid in December 2008, becoming the most powerful marine energy device in the world. It has the capacity to generate power for approximately 1,000 homes. 

Notes on the SeaGen Technology from MCT: SeaGen works by generating power from sea currents, using a pair of axial flow turbines driving generators through gearboxes using similar principles to wind generator technology. The main difference is that the high density of seawater compared to wind allows a much smaller system; SeaGen has twin 600kW turbines each of 16m diameter. The capture of kinetic energy from a water current, much like with wind energy or solar energy, depends on how many square meters of flow cross-section can be addressed by the system. With water current turbines it is rotor swept area that dictates energy capture capability, because it is the cross section of flow that is intercepted which matters. SeaGen has over 400 square meters of rotor area which is why it can develop its full rated power of 1.2MW in a flow of 2.4m/s (5 knots).

Read Full Post »

MendoCoastCurrent, January 17, 2009

Here’s the post from MendoCoastCurrent in the Citizen’s Briefing Book at President-elect Barack Obama’s change.gov site:

Renewable Energy Development (RED) federal task force

Immediately establish and staff a Renewable Energy Development (RED) federal task force chartered with exploring and fast-tracking the development, exploration and commercialization of environmentally-sensitive renewable energy solutions in solar, wind, wave, green-ag, et al.

At this ‘world-class incubator,’ federal energy policy development is created as cutting-edge technologies and science move swiftly from white boards and white papers to testing to refinement and implementation.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

If you wish to support this, please vote up this post at :

Renewable Energy Development (RED) federal task force.

∞∞∞∞∞∞∞∞∞∞∞∞∞∞∞

Mendocino Energy:

Renewable energy incubator and campus on the Mendocino coast exploring nascent and organic technology solutions in wind, wave, solar, green-ag, bioremediation and coastal energy, located on the 400+ acre waterfront G-P Mill site.

Mendocino Energy may be a Campus in Obama’s Renewable Energy Development (RED) federal task force.

Vision:

Mendocino Energy is located on the Mendocino coast, three plus hours north of San Francisco/Silicon Valley.  On the waterfront of Fort Bragg, a portion of the now-defunct Georgia-Pacific Mill Site shall be used for exploring best practices, cost-efficient, environmentally-sensitive renewable and sustainable energy development – wind, wave, solar, bioremediation, green-ag, among many others. The end goal is to identify and engineer optimum, commercial-scale, sustainable, renewable energy solutions.

Start-ups, universities (e.g., Stanford’s newly-funded energy institute), the federal government (RED) and the world’s greatest minds working together to create, collaborate, compete and participate in this fast-tracked exploration.

The campus is quickly constructed of green, temp-portable structures (also a green technology) on the healthiest areas of the Mill Site as in the past, this waterfront, 400+ acre created contaminated areas where mushroom bioremediation is currently being tested (one more sustainable technology requiring exploration). So, readying the site and determining best sites for solar thermal, wind turbines and mills, wave energy, etc.

To learn more about these technologies, especially wave energy, RSS MendoCoastCurrent.

Read Full Post »

DAVID EHRLICH, Earth2Tech/GigaOm, December 23, 2008

environmental_defenseOcean energy could have a big part to play under President-elect Barack Obama’s environmentally friendly administration, but a coalition that’s pushing for more wave and tidal power says change is needed to expand the number of projects in the U.S. Right now, there are only a handful of ocean energy projects in the U.S. and they’re all in the testing phase, according to the coalition.

The group, which is led by the New York-based Environmental Defense Fund, a non-profit environmental advocacy organization, said it has met with Obama’s transition team to discuss what it says is a confusing, and sometimes contradictory, array of federal regulations for ocean power. It claims that with federal help, ocean energy has the potential to generate 10% of the country’s demand for electricity, as well as create tens of thousands of jobs in the U.S.

Earlier this month, Obama named four key members to his cabinet that will be responsible for energy and climate change, including Steven Chu as energy secretary.

One big conflict the new cabinet may have to deal with is a jurisdictional dispute between the Federal Energy Regulatory Commission and the Minerals Management Service, part of the Dept. of the Interior. Both agencies have claims on the waters where ocean energy projects would be installed.

Part of the Energy Policy Act of 2005 gave the Minerals Management Service the power to issue leases for renewable energy projects in the outer continental shelf a zone of federally owned seabeds outside of state waters, which the coalition said typically covers an area from 3-200 nautical miles offshore.

But that new law didn’t eliminate any preexisting federal authority in the area, and the FERC has said it has the authority to license wave and tidal projects in U.S. territorial waters covering an area within 12 nautical miles of the shore.

According to the coalition, despite negotiations between the two agencies, they’ve been unable to reach an agreement on the overlapping claims. The group said that the continued uncertainty from that conflict is making it harder to lock down financing for ocean energy projects in the States.

The coalition is made up of local governments, utilities, environmental groups and ocean power companies, including Pennington, N.J.-based Ocean Power Technologies, which recently inked a deal to develop wave power projects off the coasts of Australia and New Zealand.

Read Full Post »

ALOK JHA, Guardian UK, January 5, 2009

Tidal Energy's DeltaStream

Tidal Energy's DeltaStream

Propellers on ships have been tried and tested for centuries in the rough and unforgiving environment of the sea: now this long-proven technology will be used in reverse to harness clean energy from the UK’s powerful tides.

The tides that surge around the UK’s coasts could provide up to a quarter of the nation’s electricity, without any carbon emissions. But life in the stormy seas is harsh and existing equipment – long-bladed underwater wind turbines – is prone to failure.  A Welsh renewable energy company has teamed up with ship propulsion experts to design a new marine turbine which they believe is far more robust.

Cardiff-based Tidal Energy Limited will test a 1MW tidal turbine off the Pembrokeshire coast at Ramsey Sound, big enough to supply around 1,000 homes. Their DeltaStream device, invented by marine engineer Richard Ayre while he was installing buoys in the marine nature reserve near Pembrokeshire, will be the first tidal device in Wales and become fully operational in 2010.

To ensure the propeller and electricity generation systems were as tough as possible, the tidal turbine’s designers worked with Converteam, a company renowned for designing propulsion systems for ships. “They’ve put them on the bottom of the Queen Mary … and done work for highly efficient destroyers, which is exactly the same technology that we’re looking at here,” said Chris Williams, development director of DeltaStream.

DeltaStream’s propellers work in reverse to a ship’s propulsion system – the water turns the blades to generate electricity – but the underlying connections between blades and power systems are identical to those on the ship.

Tidal streams are seen as a plentiful and predictable supply of clean energy, as the UK tries to reduce its greenhouse gas emissions. Conservative estimates suggest there is at least 5GW of power, but there could be as much as 15GW – 25% of current national demand.

A single DeltaStream unit has three propeller-driven generators that sit on a triangular frame. It weighs 250 tonnes, but is relatively light compared with other tidal systems which can be several times heavier. The unit is simple to install and can be used in closely packed units at depths of at least 20m. Unlike other tidal turbine systems, which must be anchored to the sea floor using piles bored into the seabed, DeltaStream’s triangular structure simply sits on the sea floor.

Duncan Ayling, head of offshore at the British Wind Energy Association and a former UK government adviser on marine energy, said that one of the biggest issues facing all tidal-stream developers is ease of installation and maintenance of their underwater device. “Anything you put under the water becomes expensive to get to and service. The really good bit of the DeltaStream is that they can just plonk it in the water and it just sits there.”

Another issue that has plagued proposed tidal projects is concern that the whirling blades could kill marine life. But Williams said: “The blades themselves are thick and slow moving in comparison to other devices, so minimising the chance of impact on marine life.”

The device also has a fail-safe feature when the water currents become too powerful and threaten to destroy the turbines by dragging them across the sea floor – the propellers automatically tilt their orientation to shed the extra energy.

Pembrokeshire businessman and sustainability consultant Andy Middleton said: “People are increasingly recognising how serious global warming really is, and in St David’s we are keen to embrace our responsibility to minimise climate change. DeltaStream is developing into a perfect example of the technology that fills the need for green energy and has the added benefit of being invisible and reliable.”

The country’s first experimental tidal turbine began generating electricity in Strangford Lough, Northern Ireland last year, built by Bristol-based company Marine Current Turbines. SeaGen began at about 150kW, enough for around 100 homes, but has now reached 1,200kW in testing. It had a setback early in its test phase, with the tidal streams breaking one of the blades in July.

Read Full Post »

BBC News, December 18, 2008

_45310426_43017507A tidal turbine near the mouth of Strangford Lough has begun producing electricity at full capacity for the first time.  The SeaGen system now generates 1.2MW, the highest level of power produced by a tidal stream system anywhere in the world.

The system works like an “underwater windmill” but with rotors driven by tidal currents rather than the wind.

It has been undergoing commissioning trials since May.

SeaGen will now move towards full-operating mode for periods of up to 22 hours a day, with regular inspections and performance testing carried out.

The power generated by the system is being purchased by Irish energy company, ESB Independent, for its customers in Northern Ireland and the Republic.

The turbine has the capacity to generate power to meet the average electricity needs of around 1000 homes.

Martin Wright, managing director of SeaGen developers, Marine Current Turbines, said that having the system generating at full power was an important milestone.

“It demonstrates, for the first time, the commercial potential of tidal energy as a viable alternative source of renewable energy,” he said.

“As the first mover in tidal stream turbine development, we have a significant technical lead over all rival tidal technologies that are under development.

“There are no other tidal turbines of truly commercial scale; all the competitive systems so far tested at sea are quite small, most being less than 10% the rotor area of SeaGen.”

Read Full Post »

Guardian.co.uk, December 3, 2008

wave-ocean-blue-sea-water-white-foam-photoWay back in Napoleonic Paris, a Monsieur Girard had a novel idea about energy: power from the sea. In 1799, Girard obtained a patent for a machine he and his son had designed to mechanically capture the energy in ocean waves. Wave power could be used, they figured, to run pumps and sawmills and the like.

These inventors would disappear into the mists of history, and fossil fuel would instead provide an industrializing world with almost all its energy for the next two centuries. But Girard et fils were onto something, say a growing number of modern-day inventors, engineers, and researchers. The heave of waves and the tug of tides, they say, are about to begin playing a significant role in the world’s energy future.

In the first commercial scale signal of that, last October a trio of articulated, cylinder-shaped electricity generators began undulating in the waves off the coast of Portugal. The devices look like mechanical sea snakes. (In fact, their manufacturer, Scotland’s Pelamis Wave Power Ltd., takes its name from a mythical ancient Greek sea serpent.) Each Pelamis device consists of four independently hinged segments. The segments capture wave energy like the handle of an old fashioned water pump captures the energy of a human arm: as waves rock the segments to and fro, they pump a hydraulic fluid (biodegradable, in case of spills) powerfully through a turbine, spinning it to generate up to 750,000 watts of electricity per unit. Assuming the devices continue to perform well, Portuguese utility Energis expects to soon purchase another 28 more of the generators.

The completed “wave farm” would feed its collective power onto a single high voltage sea-floor cable, adding to the Portuguese grid about 21 megawatts of electricity. That’s enough to power about 15,000 homes.

In a world where a single major coal or nuclear plant can produce more than 1,000 megawatts of electricity, it’s a modest start. But from New York’s East River to the offshore waters of South Korea, a host of other projects are in earlier stages of testing. Some, like Pelamis, rely on the motion of waves. Others operate like underwater windmills, tapping the power of the tides.

Ocean-powered technologies are in their infancy, still technologically well behind such energy alternatives as wind and solar. Necessarily designed to operate in an inherently harsh environment, the technologies remain largely unproven and — unless subsidized by governments — expensive. (Portugal is heavily subsidizing the Pelamis project, with an eye to becoming a major European exporter of clean green power in the future.) Little is known about the effects that large wave or tide farms might have on marine ecosystems in general.

Despite the uncertainties, however, proponents say the potential advantages are too striking to ignore. Eight hundred times denser than air, moving water packs a huge energy wallop. Like solar and wind, power from moving seas is free and clean. But sea power is more predictable than either wind or solar. Waves begin forming thousands of miles from coastlines and days in advance; tides rise and fall as dependably as the cycles of the moon. That predictability makes it easier to match supply with demand.

Roger Bedard, who leads ocean energy research at the U.S. utility-funded Electric Power Research Institute (EPRI) in Palo Alto, says there’s plenty of reason for optimism about the future of what he calls “hydrodynamic” power. Within a decade, he says, the U.S. could realistically meet as much as 10% of its electricity needs from hydrodynamic power. As a point of reference, that’s about half of the electricity the U.S. produces with nuclear power today. Although he acknowledges that initial sea-powered generation projects are going to be expensive, Bedard believes that as experience grows and economies of manufacturing scale kick in, hydrodynamic power will follow the same path toward falling costs and improving technologies as other alternatives.

“Look at wind,” he says. “A kilowatt hour from wind cost fifty cents in the 1980s. Now it’s about seven cents.” (That’s about the same as producing electricity with natural gas, and only about three cents more than coal, the cheapest — and dirtiest — U.S. energy choice. Any future tax on carbon emissions could narrow that gap even more, as would additional clean-power subsidies.)

For some nations, wave and tide power could pack an even bigger punch. Estimates suggest, for instance, that the choppy seas surrounding the United Kingdom could deliver as much as 25% of its electricity. British alternative energy analyst Thomas W. Thorpe believes that on a worldwide basis, waves alone could produce as much as 2,000 terawatt hours of electricity, as much as all the planet’s major hydroelectric plants generate today.

Although none are as far along as Pelamis, most competing wave-power technologies rely not on the undulations of mechanical serpents, but instead on the power captured by the vertical bobbing of large buoys in sea swells. Ocean Power Technologies (OPT), based in New Jersey, drives the generators in its PowerBuoy with a straightforward mechanical piston. A stationary section of the mostly submerged, 90-foot buoy is anchored to the ocean floor; a second section simply moves up and down with the movement of sea swells, driving pistons that in turn drive an electrical generator. The Archimedes Wave Swing, a buoy-based system developed by Scotland’s AWS Ocean Energy, harnesses the up-and-down energy of waves by pumping air to spin its turbines. Vancouver-based Finavera Renewables uses seawater as its turbine-driving hydraulic fluid.

Although Pelamis beat all of these companies out of the commercialization gate, OPT appears to be right behind, with plans to install North America’s first commercial-scale wave power array of buoys off the coast of Oregon as early as next year. That array — occupying one square-mile of ocean and, like other wave power installations, located far from shipping lanes — would initially produce 2 megawatts of power. OPT also announced last September an agreement to install a 1.4-megawatt array off the coast of Spain. An Australian subsidiary is in a joint venture to develop a 10-megawatt wave farm off the coast of Australia.

Meanwhile, Pelamis Wave Power plans to install more of its mechanical serpents — three megawatts of generating capacity off the coast of northwest Scotland, and another five-megawatt array off Britain’s Cornwall coast.

The Cornwall installation will be one of four wave power facilities plugged into a single, 20-megawatt underwater transformer at a site called “Wave Hub.” Essentially a giant, underwater version of a socket that each developer can plug into, Wave Hub — which will be connected by undersea cable to the land-based grid — was designed as a tryout site for competing technologies. OPT has won another of the four Wave Hub berths for its buoy-based system.

Other innovators are trying to harness the power of ocean or estuarine tides. Notably, in 2007, Virginia’s Verdant Power installed on the floor of New York’s East River six turbines that look, and function, much like stubby, submerged windmills, their blades — which are 16 feet in diameter — turning at a peak rate of 32 revolutions per minute. The East River is actually a salty and powerful tidal straight that connects Long Island Sound with the Atlantic Ocean. Although the “underwater windmills” began pumping out electricity immediately, the trial has been a halting one. The strong tides quickly broke apart the turbines’ first- (fiberglass and steel) and second- (aluminum and magnesium) generation blades, dislodging mounting bolts for good measure.

Undeterred, in September Verdant Power began testing new blades made of a stronger aluminum alloy. If it can overcome the equipment-durability problems, the company hopes to install as many as 300 of its turbines in the East River, enough to power 10,000 New York homes.

A scattering of similar prototype “underwater windmill” projects have been installed at tidal sites in Norway, Northern Ireland, and South Korea. (In addition, interest in moving into freshwater sites is growing. Verdant itself hopes to install its turbines on the St. Lawrence River. At least one other company, Free Flow Power of Massachusetts, has obtained Federal Energy Regulatory Commission permits to conduct preliminary studies on an array of sites on the Mississippi River south of St. Louis.)

The environmental benefits of hydrodynamic power seem obvious: no carbon dioxide or any other emissions associated with fossil-fuel-based generation. No oil spills or nuclear waste. And for those who object to wind farms for aesthetic reasons, low-profile wave farms are invisible from distant land; tidal windmill-style turbines operate submerged until raised for maintenance.

There are, however, environmental risks associated with these technologies.

New York state regulators required Verdant Power to monitor effects of their its turbines on fish and wildlife. So far, sensors show that fish and water birds are having no trouble avoiding the blades, which rotate at a relatively leisurely 32 maximum revolutions per minute. In fact the company’s sensors have shown that fish tend to seek shelter behind rocks around the channel’s banks and stay out of the central channel entirely when tides are strongest.

But a host of other questions about environment effects remain unanswered. Will high-voltage cables stretching across the sea from wave farms somehow harm marine ecosystems? Will arrays of hundreds of buoys or mechanical serpents interfere with ocean fish movement or whale migrations? What effect will soaking up large amounts of wave energy have on shoreline organisms and ecosystems?

“Environmental effects are the greatest questions right now,” EPRI’s Bedard says, “because there just aren’t any big hydrodynamic projects in the world.”

Projects will probably have to be limited in size and number to protect the environment, he says – that’s a big part of the reason he limits his “realistic” U.S. estimate to 10% of current generation capacity. But the only way to get definitive answers on environmental impact might be to run the actual experiment — that is, to begin building the water-powered facilities, and then monitor the environment for effects.

Bedard suggests that the way to get definitive answers will be to build carefully on a model like Verdant’s: “Start very small. Monitor carefully. Build it a little bigger and monitor some more. I’d like to see it developed in an adaptive way.”

Read Full Post »

JAMES OWEN, National Geographic News, December 2, 2008

The race is officially on for a U.S. $15 million (10 million Euro) prize for harnessing the power of the oceans.

The winning marine renewable energy innovation would provide a serious energy alternative to burning fossil fuels, which contribute to global warming.

Details of the Saltire Prize Challenge were announced Tuesday in Edinburgh by Scotland’s First Minister, Alex Salmond.

The award will go to the team that “successfully demonstrates—in Scottish waters—the best commercially viable wave or tidal technology capable of providing electricity to thousands of homes.”

The winning team must supply this electricity using only the power of the sea for a continuous two-year period.

“It is Scotland’s energy challenge to the world—a challenge to the brightest and best minds worldwide to unleash their talents and push the frontiers of innovation in green marine energy,” Salmond said.

“The Saltire Prize has the potential to unlock Scotland’s vast marine energy wealth, putting our nation at the very forefront of the battle against climate change.”

The prize, named after the cross of St. Andrew on the Scottish national flag, was inspired by other innovation competitions such as the U.S. $10 million Ansari X Prize.

That contest led to the first private spacecraft launch in 2004.

“Saudi Arabia of Ocean Energy”

Scotland boasts a quarter of Europe’s tidal power potential, according to Salmond.

He described the Pentland Firth, a region between Scotland’s north coast and the Orkney Islands, as the “Saudi Arabia of renewable marine energy.”

Scotland aims to meet 50% of its electricity demand from renewable resources by 2020.

There’s also huge potential for ocean energy globally, said prize committee member Terry Garcia, executive vice president for mission programs for the National Geographic Society. “It’s not going to be the sole solution to our energy needs,” Garcia said, but “this will be one of the important pieces of the puzzle.” The main purpose of the competition is to act as a catalyst for innovation, Garcia added.

“It’s both about making marine energy economically viable and being able to produce it in a sustained way on a large scale,” he said.

Wave and Tidal Power

The two major types of ocean energy are wave and tidal energy.

Wave energy technology involves floating modules with internal generators, which produce electricity as they twist about on the sea surface.

Tidal energy harnesses tidal currents with arrays of underwater turbines similar to those that propel wind farms.

Tidal ranks among the most reliable renewable energies because tides are highly predictable, said AbuBakr Bahaj, head of the University of Southampton’s Sustainable Energy Research Group in the U.K.

“But wave energy is driven by wind, which is notoriously difficult to predict,” he said.

Even so, wave power may have the higher electricity-generating potential.

In Britain, for instance, it’s estimated that wave power could potentially provide 20% of the country’s total electricity supply, against 5-10%for tidal power, Bahaj said.

The scientist says the main technical challenge is to create reliable power installations that can operate in difficult marine environments for five to ten years without maintenance.

“You also need to have multiple devices working together at each site,” he said.

Read Full Post »

KEVIN FERGUSON, The Information Week, November 24, 2008

1739725132_460c52d56dWhere is President-elect Barack Obama headed with environmental protection and renewable energy? The answer lies not so much in the encouraging but ultimately self-serving video posted on the transition team’s Web site, but rather on links elsewhere on the page. In particular, look at the appointment of senior transition official Rose McKinney-James as FERC Review Team Lead.

Unless you live in California or Nevada, you may not be familiar with the Federal Energy Regulatory Commission.  FERC — a relatively tiny agency that requested only $273.4 million and 1,465 full-time employees in its FY 2009 budget — regulates the country’s natural gas industry, hydroelectric projects, oil pipelines, and wholesale rates for electricity. You may recall that public advocacy groups excoriated FERC for its role in the deregulation of the wholesale electricity market in California and subsequent power crisis in 2000 and 2001.

So, what’s the significance of this recent appointment? McKinney-James, managing principal of Energy Works Consulting, has been championing renewable energy for decades, as the president and CEO of the public Corporation for Solar Technology and Renewable Resources (CSTRR), chair of the Nevada Renewable Energy Task Force, commissioner with the Nevada Public Service Commission, and other pubic posts.

Her efforts also have included renewable energy advocacy in the private sector — and in some rather unexpected places. The most visible of those places is MGM Mirage’s  Protech CityCenter in Las Vegas. McKinney-James sits on the MGM board.

The $7 billion development was recently awarded a Leadership in Energy and Environmental Design (LEED) certification by the U.S. Green Building Council. Project CityCenter includes a 4,000-room hotel-casino, two 400-room boutique hotels, more than 500,000 square feet of retail space, and 2,900 residential units on 66 acres between the Bellagio and Monte Carlo.

Perhaps McKinney-James can accelerate what has been a slow accommodation of renewable energy sources into FERC’s mix.

Read Full Post »

TERRY DILLMAN, South Lincoln County News, September 23, 2008

Oregon’s emergence as a national leader in developing wave energy technology crested Thursday, when the U.S. Department of Energy (DOE) announced grant support to establish the Northwest National Marine Renewable Energy Center at Oregon State University’s Hatfield Marine Science Center (HMSC) in Newport.

The agency selected 14 research teams to receive as much as $7.3 million -representing a cost-shared value of more than $18 million – for projects to “advance commercial viability, cost-competitiveness, and market acceptance of new technologies that can harness renewable energy from oceans and rivers.” It’s part of the federal Advanced Energy Initiative designed to dramatically boost clean-energy research funding to develop cleaner, reliable alternative energy sources that cost less. The Energy Independence and Security Act (EISA) signed into law in December 2007 authorizes DOE to establish a program of research, development, demonstration, and commercial application to expand marine and hydrokinetic renewable energy production.

“Wave, tidal, and current-driven hydro power is an important clean, natural, and domestic energy source that will promote energy security, and reduce greenhouse gas emissions,” John Mizroch, acting assistant secretary of energy efficiency and renewable energy, noted in announcing the selections.

A merit review committee of national and international water power experts made the selections. Two awards of up to $1.25 million in annual funding, renewable for up to five years, went to establishing marine energy centers.

One went to the University of Hawaii in Honolulu for the National Renewable Marine Energy Center.

The other went to OSU and the University of Washington to establish the Northwest National Marine Renewable Energy Center at HMSC, with “a full range of capabilities to support wave and tidal energy development” for the nation. DOE officials want the center to “facilitate commercialization, inform regulatory and policy decisions, and close key gaps in understanding.”

The federal grant will add to funding from the Oregon legislature, OSU, the Oregon Wave Energy Trust (OWET), the University of Washington and other sources to bring in $13.5 million in five years to – according to Robert Paasch, the interim program director for the new center – “help move the generation of energy from waves, ocean currents and tides from the laboratory to part of the nation’s alternative energy future.”

The main effort is to build a floating “berth” to test wave energy technology off the Oregon coast near Newport, as well as fund extensive environmental impact studies, community outreach, and other initiatives.

“This is just the beginning,” Paasch added. “There’s still a lot of work to do on the technology, testing, and environmental studies. But we have no doubt that this technology will work, that wave energy can become an important contributor to energy independence for the United States.”

Oregon can now lead those efforts, thanks to involvement by numerous partners.

The state legislature committed $3 million in capital funding to help create the new wave energy test center.

OWET – a private, not-for-profit organization founded in 2007 and funded by Oregon Inc. to be an integral part of the state’s effort to become the leader in renewable wave energy development – has provided $250,000 in funding, and is working to coordinate support from government agencies, private industry, fishing, environmental, and community groups.

OWET’s goal is to have ocean wave energy producing at least 500 megawatts of energy by 2025 for Oregon consumption.

The University of Washington has committed funding support and will take the lead role in innovative research on tidal and ocean current energy. The National Renewable Energy Center in Golden, Colo., will support studies on how to integrate wave energy into the larger power grid, and help it take its place next to other alternative energy sources, such as wind and solar.

Lincoln County officials immersed themselves in the effort from the outset. OSU’s wave energy test site is off county shores, and groups such as the Newport-based FINE – Fisherman Involved in Natural Energy – are active in providing input and advice from coastal constituencies.

“Oregon is now the unquestioned national leader in marine renewable energy,” Paasch said. “But as this technology is still in its infancy, we want to get things right the first time. We need extensive research on environmental impacts, we need to work with community groups and fishermen, and we need our decisions to be based on sound science as we move forward.”

OSU’s College of Engineering, College of Oceanic and Atmospheric Sciences and Hatfield Marine Science Center will lead technology development, as well as diverse research programs on possible environmental impacts on the wave resource, shores, marine mammals and other marine life.

Construction of the new floating test berth should begin in 2010, Paasch said, after design, engineering work and permits have been completed. The facility will open on a fee basis to private industry groups that want to test their technology, and will provide detailed power analysis, as well as a method to dissipate the power.

“When complete, we’ll be able to test devices, see exactly how much power they generate and be able to assess their environmental impact, using technologies such as the OSU Marine Radar Wave Imaging System and on-site wave sensors,” Paasch

OSU will also continue its own research on wave energy technology led by Annette von Jouanne, professor of electrical engineering.

The university is working closely with private industry partners, recently finished a linear test bed to do preliminary testing of new technology on the OSU campus, and will test prototypes that OSU researchers consider as having the best combination of power production, efficiency and durability. In 2007, the university hosted a workshop to begin looking at the potential ecological implications of establishing wave energy parks along the West Coast. On-going research will continue to ponder that and many other questions.  Much of that research will take place at HMSC.

Read Full Post »

KATE GALBRAITH, The New York Times, September 23, 2008

For years, technological visionaries have painted a seductive vision of using ocean tides and waves to produce power. They foresee large installations off the coast and in tidal estuaries that could provide as much as 10% of the nation’s electricity.

But the technical difficulties of making such systems work are proving formidable. Last year, a wave-power machine sank off the Oregon coast. Blades have broken off experimental tidal turbines in New York’s turbulent East River. Problems with offshore moorings have slowed the deployment of snakelike generating machines in the ocean off Portugal.

Years of such problems have discouraged ocean-power visionaries, but have not stopped them. Lately, spurred by rising costs for electricity and for the coal and other fossil fuels used to produce it, they are making a new push to overcome the barriers blocking this type of renewable energy.

The Scottish company Pelamis Wave Power plans to turn on a small wave-energy farm — the world’s first — off the coast of Portugal by year’s end, after fixing the broken moorings. Finavera Renewables, a Canadian company that recently salvaged its sunken, $2.5 million Oregon wave-power machine, has signed an agreement with Pacific Gas & Electric to produce power off the California coast by 2012. And in the East River, just off Manhattan, two newly placed turbines with tougher blades and rotors are feeding electricity into a grocery store and parking garage on Roosevelt Island.

“It’s frustrating sometimes as an ocean energy company to say, yeah, your device sank,” said Jason Bak, chief executive of Finavera. “But that is technology development.”

Roughly 100 small companies around the world are working on converting the sea’s power to electricity. Many operate in Europe, where governments have pumped money into the industry. Companies and governments alike are betting that over time, costs will come down. Right now, however, little electricity is being generated from the ocean except at scattered test sites around the world.

The East River — despite its name, it is really a tidal strait with powerful currents — is the site of the most advanced test project in the United States.

Verdant Power, the company that operates it, was forced to spend several years and millions of dollars mired in a slow permit process, even before its turbine blades broke off in the currents. The company believes it is getting a handle on the problems. Verdant is trying to perfect its turbines and then install 30 of them in the East River, starting no later than spring 2010, and to develop other sites in Canada and on the West Coast.

Plenty of other start-ups also plan commercial ocean-power plants, at offshore sites such as Portugal, Oregon and Wales, but none have been built.

Ocean-power technology splits into two broad categories, tidal and wave power. Wave power, of the sort Finavera is pursuing, entails using the up and down motions of the waves to generate electricity. Tidal power — Verdant’s province — involves harnessing the action of the tides with underwater turbines, which twirl like wind machines.

(Decades-old tidal technologies in France and Canada use barrage systems that trap water at high tide; they are far larger and more obtrusive than the new, below-waterline technologies.)

A third type of power, called ocean thermal, aims to exploit temperature differences between the surface and deep ocean, mainly applicable in the tropics.

Ocean power has more potential than wind power because water is about 850 times denser than air, and therefore packs far more energy. The ocean’s waves, tides and currents are also more predictable than the wind.

The drawback is that seawater can batter and corrode machinery, and costly undersea cables may be needed to bring the power to shore. And the machines are expensive to build: Pelamis has had to raise the equivalent of $77 million.

Many solar start-ups, by contrast, need as little as $5 million to build a prototype, said Martin Lagod, co-founder of Firelake Capital Management, a Silicon Valley investment firm. Mr. Lagod looked at investing in ocean power a few years ago and decided against it because of the long time horizons and large capital requirements.

General Electric, which builds wind turbines, solar panels and other equipment for virtually every other type of energy, has stayed clear of ocean energy. “At this time, these sources do not appear to be competitive with more scalable alternatives like wind and solar,” said Daniel Nelson, a G.E. spokesman, in an e-mail message. (An arm of G.E. has made a small investment in Pelamis.)

Worldwide, venture capital going to ocean-power companies has risen from $8 million in 2005 to $82 million last year, according to the Cleantech Group, a research firm. However, that is a tiny fraction of the money pouring into solar energy and biofuels.

This month the Energy Department doled out its first major Congressionally-funded grants since 1992 to ocean-power companies, including Verdant and Lockheed Martin, which is studying ocean thermal approaches.

Assuming that commercial ocean-power farms are eventually built, the power is likely to be costly, especially in the near term. A recent study commissioned by the San Francisco Public Utility Commission put the cost of harnessing the Golden Gate’s tides at 85 cents to $1.40 a kilowatt-hour, or roughly 10 times the cost of wind power. San Francisco plans to forge ahead regardless.

Other hurdles abound, including sticky environmental and aesthetic questions. In Oregon, crabbers worry that the wave farm proposed by Ocean Power Technologies, a New Jersey company, would interfere with their prime crabbing grounds.

“It’s right where every year we deploy 115,000 to 120,000 crab pots off the coast for an eight-month period to harvest crab,” said Nick Furman, executive director of the Oregon Dungeness Crab Commission. The commission wants to support renewable energy, but “we’re kind of struggling with that,” Mr. Furman said

George Taylor, chief executive of Ocean Power Technologies, said he did not expect “there will be a problem with the crabs.”

In Washington State, where a utility is studying the possibility of installing tidal power at the Admiralty Inlet entrance to Puget Sound, scuba divers are worried, even as they recognize the need for clean power.

Said Mike Racine, president of the Washington Scuba Alliance: “We don’t want to be dodging turbine blades, right?”

Read Full Post »

SAM AOLA OOKO, EcoWorldly, August 15, 2008

Watch this space: Africa is fast becoming an important player in cleaner energy sources. If only 0.3% of sunlight falling on the Sahara and Middle Eastern deserts can potentially provide all of Europe’s energy needs because of its intensity, according to a report, how about everything else?

How much wind blows from Nouakchott to Natal, and how much of this is ever utilized as an alternative energy source? How much water flowing in the Zambezi is used to power villages in Zambia and Zimbabwe; and how much more of the great Nile waters that flow into the Mediterranean can sustainably be harnessed to run corn mills in Nakuru and cotton ginneries in Jinja and Khartoum or fisheries in Cairo?

And now some bold African should emulate John McCain. He may be better known for his tenacity inside the muddle of US politics than for his expertise on the quest for cleaner energy sources. But many surely gaped at the figures he offered for a battery to power America’s engines in the wake of the oil price burst recently.

McCain’s proposal of a federally funded $300 million prize for a car battery innovation that is 30% cheaper than current technology and that would help Americans (all 300 million of them, and that translates to another $1 for each!) decrease their reliance on oil should make Africa ponder for better, cheaper energy for herself, not just to drive cars alone but to catapult Africa’s social and economic revolutions.

Perhaps the African Union should come in, and this could be the first important test for a Africa-wide government as championed by Senegalese president, Abdoulaye Wade – let Africa define her own race towards a more sustainable continent less dependent on oil. How much does Africa spend on oil annually?

Bio-fuels are nice sounding but are a clever diversion from Africa’s pursuit of all abundant power of the sun. Ester Nyiru, a respected African economist, argues that it is now essential to make the most of alternative energy sources, such as solar, tidal and wind power. “African countries are not using alternative power supplies since international combines do not encourage the switch; indeed, the use of such technologies may damage their business.”

No less authority than the UN Environment Programme recently advised African countries to plan an energy future around alternative sources. The relevance of such options against the backdrop of rising oil prices grows by the day hence the need to fast track an alternative energy revolution for Africa.

If Africa’s 800 million population was any consideration to peg a figure on how much the continent should invest, then, perhaps, a $800m prize for the most viable innovation to power each of Africa’s villages should keep her ahead of McCain’s American dream. And Africa has the advantage of the abundance of the sun.

Just consider this: if only 0.3% of the African sun can power all of Europe, what then can she do with with the 99.7% “surplus”? Imagine what the fisherman on the shores of Lake Victoria could do with the sun to protect his catch and deliver it unspoilt to the market in Europe. Or what a mango farmer in Xai Xai, Mozambique could do with the sun to preserve his fruit and ensure its delivery as a value added product to a Walmart store in Scranton, Pennsylvania. Or what a sculptor in KwaZulu could do with wind energy to produce a green gadget that will be an art lover’s prized possession in Winnipeg!

It can be possible. Every single village in Africa can have cheaper, cleaner, sustainable energy and we can re-write every book that proclaims the end of poverty. Forget oil, alternative energy is the way to go for Africa.

Read Full Post »

GreenCarCongress.com, July 26, 2008

The US Minerals Management Service (MMS) is proceeding with the consultation and analyses necessary to move toward the issuance of limited leases under its interim policy for authorizing alternative energy data collection and technology testing activities on the Outer Continental Shelf (OCS).

MMS announced its interim policy in November 2007 to jumpstart basic information gathering efforts relating to development of OCS alternative energy resources such as wind, waves, and ocean currents as authorized by the Energy Policy Act of 2005 (EPAct). The limited leases envisioned under the interim policy will be for a term of five years and will not convey any right or priority for commercial development.

Following the initial announcement, MMS received more than 40 nominations of areas proposed for limited leasing off the west and east coasts. In April MMS identified a subset of 16 proposed lease areas for priority consideration and provided public notice of those areas for the purpose of determining competitive interest as required by EPAct and for receiving relevant environmental or other information. The comment period on the April notice closed on June 30. A brief description of the information received and MMS’s decisions concerning the 16 proposed lease areas follows.

  • New Jersey, Delaware, and Georgia—the 10 lease areas (six off NJ, one off DE, and three off GA) proposed for site assessment activities relating to wind resources drew no competing nominations and no significant comment. MMS will proceed with a noncompetitive leasing process for these sites.
  • Florida—three of the four lease areas off the southeast coast proposed for site assessment or technology testing activities relating to ocean current resources received competing nominations, and comments concerning the areas were favorable. MMS will proceed with a noncompetitive leasing process for the one site that did not receive competing nominations. Due to timing constraints inherent in the interim policy, as well as bureau budget and staffing considerations, MMS has decided not to proceed with a competitive auction for the other areas. Instead, the competing nominators have been asked to collaborate in order to enable interested parties to jointly benefit in information gathering under leases issued noncompetitively.
  • California—neither of the two areas off Northern California (Humboldt and Mendocino Counties) proposed for site assessment and technology testing relating to wave resources drew new competing nominations. However, based on two original overlapping nominations in the Humboldt area from the initial Call for Nominations in Nov. 2007, MMS has determined that there is competitive interest in that proposed lease area. MMS also received numerous comments from local stakeholders concerned about potential use conflicts and environmental issues in both areas. For the Mendocino area, MMS has decided to proceed with a noncompetitive leasing process, working with the applicant and local stakeholders to refine the area and scope of proposed activities and to address other local concerns. For the Humboldt area, MMS has decided not to hold a competitive auction and to ask the competing nominators to collaborate. If they agree to collaborate, MMS will proceed with a noncompetitive leasing process as in the Mendocino area.

The process for issuing limited leases under the interim policy will entail thorough environmental analysis under the National Environmental Policy Act and related laws, as well as close consultation with federal, state, and local government agencies as required by EPAct.

The limited leases that will be issued under the interim policy will enable the lessees to collect information that will be useful for potential commercial projects in the future under an MMS regulatory program that is in development.

MMS published a proposed OCS alternative energy rulemaking on July 9, 2008. When final, this rule will govern all future commercial OCS alternative energy activities and will apply to any future commercial development in the areas leased under the interim policy. Limited leaseholders wishing to conduct commercial activities will need separate authorization under the final rule that is adopted.

The MMS interim policy is ongoing pending the adoption of a final rule governing OCS alternative energy activity. Interested parties may continue to submit nominations, and MMS may act on other nominations that already have been received or are received in the future.

The specific companies involved with the proposed projects are listed below:

  • Delaware: Bluewater Wind Delaware LLC (wind resources data collection)
  • New Jersey: Bluewater Wind New Jersey Energy LLC (3 OCS blocks for wind resources data collection). Fisherman’s Energy of New Jersey (wind resources data collection). Winergy Power LLC (2 OCS blocks for wind resources data collection)
  • Georgia: Southern Company (3 OCS blocks for wind resources data collection)
  • Florida: Aquantis LLC/Aquantis Development Co. Inc. (ocean current data collection and technology testing)
  • California: Pacific Gas & Electric Co. (wave resources data collection, offshore Mendocino)

There is one proposed lease area off California and three off Florida where there is overlapping interest. For those areas, MMS is investigating whether the companies are interested in collaborating on resource data collection activities. Those companies are:

  • California: Pacific Gas and Electric Co. and Marine Sciences (wave resources data collection offshore Humboldt)
  • Florida: Proposed lease area 1: Oceana Energy Co and Vision Energy LLC (ocean current resource data collection). Proposed lease area 2: Marine Sciences and Vision Energy LLC (ocean current resource data collection). Proposed lease area 4: Florida Power & Light Co and Vision Energy LLC (ocean current resource data collection).

Read Full Post »

ERICA GIES, eMagazine.com, May 2008

Wales, a beautiful corner of the United Kingdom on the western edge of England, helped fuel Britain’s industrial revolution, not to mention its pea-soup pollution “fogs.” The mining of vast quantities of coal from its southern valleys for two centuries enabled the British to go forth and conquer the world. Now, with global warming an increasing concern, Britain is shifting away from coal and toward renewable energy, striving for targets set in concert with other European Union (EU) member countries. Britain’s commitment to generate 15% of total energy—including electricity, heat and transport fuels—from renewables by 2020 sounds impressive in the absence of a national U.S. target. But 17 of the 27 EU countries have higher targets, including top-flight Sweden with 49%.

Since gaining some degree of autonomy from the United Kingdom in 1999, Wales is now setting more aggressive targets for itself. For example, it aims to be self-sufficient in renewable and low-carbon electricity by 2025. Such programs receive cautious welcome from environmental nonprofits, but they have concerns. According to Neil Crumpton, energy campaigner for Friends of the Earth in Wales, “What ministers announce and what is likely to happen are two very different things…. The targets are usually not backed by policies and funding that will deliver.”

Environmental groups also say they’d like to see government put more resources into conservation as well as new sources of generation. And when it comes to the latter, they would give priority to home-based solar and wind devices, because it’s educational and encourages thriftiness. Critics gain ammunition to question focus and commitment because of the many layers of government bureaucracy—from Wales, the UK and the EU.

When discussing Wales’ commitment to make all new buildings zero carbon by 2011, Environment Minister Jane Davidson admitted that jurisdiction can slow things down. “Well, it’s one of these areas which is complicated by the fact that the majority of the responsibility for the area lies with the UK government,” she says. “So what we can do as a Welsh Assembly Government is relatively limited.”

Still, Wales perseveres. In an attempt to boost its knowledge economy, the Welsh Assembly Government has created 11 Technium Innovation Centers to drive enterprise and innovation in Wales. Companies accepted into a Technium benefit from the state-of-the-art facilities, university expertise, and business support. Some start-ups have found the program a lifesaver, while others complain it is bureaucratic or avoid it entirely. And Wales is launching a wide range of projects, from a 350-megawatt (MW), wood chip-fueled biomass plant to increasing offshore wind to 33 gigawatts by 2020 (requiring 7,000 turbines). There are also solar projects, wave and tidal energy and innovative waste reclamation for energy.

Robert Hertzberg, former Speaker of the California State Assembly, founded a solar company called G24i in Cardiff, and high-tech dye-sensitized solar cell (DSSC) technology started rolling off machines in November. G24i is the first company in the world to manufacture this technology in a flexible coating, and its first product is a cell phone charger sold in developing countries. However, Hertzberg plans to expand soon to building-integrated materials, putting solar inside light fixtures, window blinds, and more.

Hertzberg said he chose Wales because Europe is much more receptive to renewable energy than the U.S., but he largely avoided the state incentive plan because he believes in operating independently and wanted to get his company up and running quickly. “In all governments, you just get stuck in the morass of bureaucracy,” he says. “And if you accept a dollar, you have so many conditions. It’s not worth it.” With a new 2.5 MW windmill on the property, G24i has covered the company’s current energy usage and is planning an on-site learning center to teach people about renewable energy.

Harnessing the ocean’s restless energy has long been the dream of scientists, but making it a commercial reality has mostly eluded entrepreneurs. Iain Russell is the local manager of Wave Dragon, a floating, slack-moored wave energy converter composed of vertical turbines near the water’s surface. It’s stationed close enough to shore to transmit power to customers via underwater transmission lines. Wave Dragon is trying to get its 7 MW prototype into the water off Pembrokeshire for a test run. But as a small developer, it had to apply for a government grant and has been making its way through consultations, environmental impact assessments and approvals since 2005.

“There is no existing approval process for offshore wave energy installations,” says Russell. “Several years and millions of pounds may be OK for a 300 MW offshore wind farm, but for a small wave developer whose device will only be in the water for a year or two, the process is not proportional.” Several competitors around the world are working on and testing prototypes, and Wave Dragon has tested a prototype in Denmark. Another company permanently connected its device to the Italian grid from the Straits of Messina in 2006.

Wales’ Severn Estuary has the second highest tidal range in the world. The lure of exploiting that energy has called out particularly loudly in recent years due to global warming, energy security concerns and rising fossil fuel costs. But the estuary is also protected by several national and international wildlife designations, so the debate is on.

The British government is currently considering two tidal technologies. One, essentially a dam called a barrage, uses the energy difference between high and low tides. The other, a tidal lagoon, consists of offshore catchment pools that would channel energy without blocking the entire river. Although the currently study is looking at different sized facilities, the largest would supply 4.4% of Britain’s electricity, or 0.6% of its total energy. It would also reduce less than 1% of its carbon emissions for an estimated cost of $29 billion and not come online until 2022.

“Harnessing the Severn will produce a long-term renewable energy source for Wales and also the UK,” said Jane Davidson, Wales’ minister for environment, sustainability and housing.

Most Green groups are vehemently opposed, both because of the destruction of rare habitat and because they say the project is a boondoggle that diverts time and money from energy efficiency, conservation and less environmentally damaging renewable energy technologies that would come online more quickly.

Britain is also considering in-stream tidal projects, which Matt Lumley of the Nova Scotia Department of Energy says are like underwater windmills that harness kinetic energy and have environmental and economic footprints much lighter than that of barrage technology. A tidal-stream “farm” is planned off the coast of north Wales, near Anglesey, and subject to approval could be completed by 2011. Its seven turbines could power 6,000 homes.

Read Full Post »

CLAIRE BATES, The Daily Mail, July 17, 2008

The first ever commercial electricity powered by the tides has been put on the National Grid, project managers said today.

The £10million SeaGen turbine based in Northern Ireland’s Strangford Lough generated enough green energy to supply 150 homes in a test. Full-blown production is expected in a few weeks’ time.

The SeaGen in Strangford Lough will generate 1.2 megawatts of power at full capacity

Working like an underwater windmill, the turbine’s two rotors are propelled by some of the world’s fastest tidal flows that stream in and out of the Lough at speeds of up to 8 knots.

It is moored to the sea floor 400 metres from the shore and will work for about 20 hours each day. No energy is generated during tide changes as tidal speed drops to below 2 knots.

The SeaGen has two rotors that will revolve 10 to 15 times a minute

Once fully operational Seagen, run by Marine Current Turbines (MCT) Ltd, will generate 1.2 megawatts of hydropower, supplying the equivalent of 1,000 homes.

Managing director Martin Wright said: ‘This is an important milestone for the company and indeed the development of the marine renewable energy sector as a whole.

‘SeaGen, MCT, tidal power and the UK Government’s push for marine renewables all now have real momentum.’

Tidal energy is generated by the relative motion of the Earth, Sun and Moon, which interact via gravitational forces.

Although more expensive to develop it is far more predictable than wind energy or solar power.

Energy Secretary John Hutton said: ‘This kind of world-first technology and innovation is key to helping the UK reduce its dependency on fossil fuels and secure its future energy supplies.

‘Marine power has the potential to play an important role in helping us meet our challenging targets for a massive increase in the amount of energy generated from renewables.’

Strangford is a breeding ground for common seals, but the company said the speed of the rotors is so low – no more than 10 to 15 revolutions per minute – that they are unlikely to pose a threat to marine wildlife.

Read Full Post »

Renewable Energy Development Blog, April 23, 2008

DeltaStream by Eco2The latest Tidal Energy venture is a demonstration project in Welsh waters backed by renewable energy developer Eco2, investing £150,000 into Tidal Energy Limited as the company installs DeltaStream. The finance needed by Tidal Energy Limited, which was formerly known as Tidal Hydraulic Generators, will fund the prototype phase of this 12 month operation, reaching £6 million. Eco2 will fund £1 million which has been matched by the Carbon Connections Development Fund.

DeltaStream is tidal stream technology, distinct from other devices as it does not require fixing to the sea bed. Each DeltaStream energy device is a 1.2MW capacity generator made up of three turbines in a triangular frame. The frame itself is comparatvely light which will positioning with a minimum of effort. To prevent the DeltaStream from being shifted by the currents it will require some form of ballasting.

The DeltaStream is modular as the components can be exchanged for maintenance or repair. This makes the DeltaStream energy device considerably cheaper to maintain than comparable tidal systems.

Tidal Energy Limited plans to begin manufacturing the device later in 2008 with a view to beginning full-scale installation in 2009.

David Williams, Chief Executive of Eco2, said: “This is an important development as it literally takes renewable power generation out of sight, minimising environmental impact, yet harnessing the largely untapped energy resources of the oceans, far more cost effectively than before. We believe this is the most aesthetic and energy efficient solution yet to meeting EU renewable energy targets.”

More information can be found by reading the Carbon Connection DeltaStream Case Study.

Some more Tidal Energy turbines in development around the world

SeaGen at Strangford Lough, Northern Ireland
Tocardo Turbines at Pentland Firth, Scotland
Rotech Tidal Turbines at Wando Hoenggan Waterway, South Korea
Free Flow Turbines at St Lawrence River, Canada

Read Full Post »

http://www.inthenews.uk.co, April 7, 2008

Planning permission has been granted by the Energy Secretary for a tidal stream generator to be tested in the Humber estuary, Stallingborough, United Kingdom.

When in the water the prototype model is estimated to generate up to 0.15MW and it will be one of the first tidal power machines to supply Great Britain’s national grid.

The generator will be positioned off the south bank of the Humber at Upper Burcom near Stallingborough.

It will work by extracting energy from underwater currents in a similar way to wind turbines.

Energy from tidal flows will power a pair of straight horizontal hydrofoils, 11m in length, which will move up and down like a dolphin’s tail.

If it is successful then it will be used to develop larger 1MW units which could be used in arrays generating up to 100MW each. This is enough to power the equivalent of 70,000 homes.

The project, developed by Pulse Tidal Ltd., has been given backing of £878,000 from the government.

“Our continued support for these emerging technologies is essential if the UK is to cement its position as a world leader in marine technologies,” said Energy Secretary John Hutton.
“I have made clear our commitments to renewable energy and to marine technologies. We will be doubling the support available for those technologies under the Renewables Obligation.

“This kind of tidal project, if proven, will go some way to helping the UK meet its ambitious targets for clean, green energy.”

Read Full Post »

ANTHONY DOESBURG, New Zealand Herald, April 28, 2008

An experimental turbine generating 1MW will be installed in Cook Strait off Island Bay Summer 2008, costing $10 million.

A prototype of what is likely to be the first turbine for tapping the tidal energy of New Zealand waters is sailing around Scottish seas bolted to a ship.

Christchurch company Neptune Power wants to begin installing an experimental turbine in Cook Strait next summer, based on the design being tested off Scotland.

Neptune received resource consent from the Greater Wellington Regional Council this month for a trial that can last up to 10 years.

Neptune director Chris Bathurst said the company was awaiting the results of the shipboard testing before buying a turbine from the unnamed manufacturer.

So far it has been established that the turbine rotates as intended and now performance and reliability testing is under way.

“Because they wanted to measure how much power it develops at exact speeds, they’ve bolted it to the front of this vessel, which is much easier than measuring where you’ve got variable tidal flows,” Bathurst said.

The turbine Neptune intends installing at a cost of $10 million 4.5km off Wellington’s Island Bay will have a maximum generation capacity of 1MW – enough for about 500 homes.

That is a fraction of the 12GW of power – 1.5 times New Zealand’s present generation capacity – Bathurst calculates could be extracted from Cook Strait at a cost of billions.

Bathurst, a mechanical engineer with a background in the aluminium smelting industry, is not daunted by that sum. He says he is well versed in capital raising, having been involved from the beginning in a successful US$1.3 billion smelter project in Mozambique.

“I’m quite sure we could bring in overseas money for this because people will see it as a way of attracting carbon credits.”

But he wants New Zealand investors to have priority, and would like up to a third of the venture’s value to be available to the public.

“We’ve turned various offers of investment down because first we wanted to get resource consent and know that the technology is going to work. Then we would go after the money, and we’re at that stage now.”

It is intended that the turbines will be made in New Zealand. The 14m-diameter machines are made of carbon fibre so yacht builders are potential manufacturing partners.

The turbine’s carbon fibre construction should give it three times the generation capacity per tonne of a conventional wind turbine, Bathurst said.

“It’s very light. That means when we get into mass production it will be correspondingly cheaper as well. Manufacturing costs generally are in line with the mass of the materials used.”

Bathurst can see New Zealand becoming an exporter of marine energy expertise in the same way that it is a world leader in geothermal power generation.

The turbine itself might be light but it will be held in place by a concrete tank weighted with 700 tonnes of a material that is yet to be finalised.

The trial turbine will be anchored with a heavier weight than is likely to be needed for the production turbines because it is not known what forces they will have to withstand.

“After we’ve had it down for a period and analysed the forces, we’ll be able to be more accurate about the weight needed.”

The turbine will be placed in waters known as the “Karori rip”, an area where the tidal current changes orientation from east-west to north-south where Wellington juts into Cook Strait.

“That speeds up the current at that point – a bit like a bend in a river,” Bathurst said.

Power from the trial turbine is expected to be brought ashore at Vector’s Island Bay substation.

Read Full Post »

Nova Scotia Premier’s Office, January 8, 2008

Nova Scotia is one step closer to building North America’s first in-stream tidal technology centre to host some of the world’s leading devices to harness energy from the world’s highest tides.

Three candidates, representing technologies from Canada, U.S.A. and Ireland, have cleared the first hurdle in their bid to demonstrate tidal devices in the Bay of Fundy and the province has given Minas Basin Pulp and Power conditional approval to build the host facility.

“These companies know what we know — the Bay of Fundy is one of the world’s best sites for tidal development,” said Premier Rodney MacDonald. “And today we are a step closer to proving it. This facility can become a landmark centre of excellence in our efforts to provide cleaner sources of energy.

“The more we move away from coal-based electricity, the more we protect our environment — a key priority for this government.”

The facility will be funded by a $4.7-million grant from the province’s Ecotrust for Clean Air and Climate Change program, a $3-million zero-interest loan from EnCana Corporation’s Environmental Innovation Fund, and significant contributions from each of the successful developers. The province will also make $300,000 available for environmental and permitting work.

“We are grateful for the shared desire today to help create a brand new industry,” said Energy Minister Richard Hurlburt. “And we are pleased to welcome some of the world’s most promising technology to our province. If we combine that technology with Nova Scotia’s offshore expertise, research capacity and enormous tidal resource, this can become a truly outstanding centre of excellence.”

Gerry Protti, president of EnCana Corporation’s offshore and international division added,”EnCana is pleased to support the development of a promising and untapped energy resource here in Nova Scotia. Unlocking the unconventional power of the tides requires innovative thinking and the kind of creative partnerships that will be generated at this centre.”

The three candidates in negotiations for first occupancy in the proposed facility are:

      

  • Clean Current (using a Clean Current Mark III Turbine)
  • Minas Basin Pulp and Power Co. Ltd. (UEK Hydrokinetic Turbine)
  • Nova Scotia Power Inc. (OpenHydro Turbine)
  •  

     

Minas Basin Pulp and Power Company proposes to construct the facility infrastructure, which would connect all tidal devices from the Bay of Fundy to the Nova Scotia electric grid.

“As a Nova Scotia company, we’re extremely pleased to play a role in moving tidal technology forward,” said John Woods, vice-president of energy at Minas Basin Pulp and Power. “The fact that we’ll be working together with devices from both North America and Europe shows the potential global reach of this technology.”

Glen Darou, Clean Current’s president and CEO added, “Nova Scotia is demonstrating strong leadership in sponsoring this world-class demonstration site. The Clean Current team is delighted to be part of this history-making event. The Clean Current Mark III turbine that we will install here is simple, efficient and environmentally friendly.”

Ralph Tedesco, president and CEO of Nova Scotia Power said
“Nova Scotia Power and OpenHydro are proud to be helping harness this silent, invisible, predictable energy — renewable liquid gold from the Bay of Fundy.”

“Tidal energy has the potential to help Nova Scotia meet its 2020 deadline to cut greenhouse gas to 10% below 1990 levels,” said Mr. Hurlburt. “But please remember — a number of conditions must be met before anything goes in the water.”

These conditions include the completion of:

      

  • A strategic environmental assessment (expected spring 2008 )
  • Site-specific environmental assessment(s)
  • Provincial and federal permits and approvals
  • A contribution agreement between province and developer(s)
  • A land lease agreement between province and developer(s)
  •  

     

Research identifies the Bay of Fundy as potentially the best site for tidal power generation in North America, with a world-class resource in close proximity to an existing grid and potential consumers.

Nova Scotia’s regulations demand nearly 20% of the province’s electricity supply come from renewable sources by 2013. In-stream tidal energy has the potential to help meet that target.

Tidal technology also holds potential future opportunities for Nova Scotia suppliers and manufacturers, many of whom already have experience in Nova Scotia’s offshore petroleum industry.

The Nova Scotia departments of Energy, Environment and Labour, and Natural Resources have worked together to develop the project, in support of one of the province’s five priorities — protecting the environment.

Read Full Post »

RenewableEnergyDev.com, April 8, 2008

A Dutch tidal device developer has recognised the potential in the Scottish waters and is planning a new tidal energy power plant in the Pentland Firth, hoping to begin development as early as the end of 2008.

Tocardo has established a subsidiary company called Tocardo Tidal Energy with the plan to set up production, assembly and office facilities in Wick Harbour. The major goal is to construct a 10MW offshore tidal energy plant which has tentatively been christened the Pentland Firth Tidal Energy Park. This first foray harnessing tidal energy in the Pentland Firth is expected to be a mere drop in the ocean, as it were, for future tidal power projects in the region.

The project plans to use the Tocardo technology which is a twin-bladed horizontal axis turbine with direct drive generator and fixed pitch blades. The rotor blades on the turbines will be 10m in diameter and will be capable of generating 650kW each.

A pre-feasibility study has been prepared by Tocardo BV Tidal Energy to identify the tasks required for a Tidal Master Plan Study. The Tidal Master Plan Study will be the feasibility study to determine the best way forward towards accelerated development of the tidal energy potential of the Pentland Firth.

An objective has been set in place by the Scottish Government to harness 1300MW of tidal energy in the Pentland Firth by 2020.

Read Full Post »

Tidal energy comes of age in NW Europe

Two new tidal energy schemes in Wales and Northern Ireland will showcase a novel technology that is being seen by many as the way forward for this form of renewable energy generation. Sean Ottewell reports

Plans to install the world’s first commercial scale tidal energy system in Northern Ireland’s Strangford Lough have been published by English tidal energy company Marine Current Turbines (MCT).

The company is targeting the installation of its 1.2MW SeaGen tidal system for the first quarter of 2008. When fully deployed in the Lough and connected to the local grid, the system will generate enough electricity for 1000 homes.

At 1.2MW capacity, SeaGen is the world’s largest tidal current device by a significant margin and is considered a prototype for commercial technology that will be replicated on a large scale over the next few years.

The method of installing the SeaGen device in Strangford Lough has been adapted to enable it to be deployed by a crane barge rather than a larger jack-up vessel. SeaGen will be installed by the crane barge Rambiz, operated by the Belgium company Scaldis, and overseen by MCT’s own in-house engineering team in partnership with SeaRoc, a leading firm of marine engineering consultants.

The exercise, which will take up to 14 days, was scheduled to start towards the end of March, when the Rambiz barge sails with SeaGen loaded on board from Belfast to Strangford Lough.

The additional fabrication engineering work on SeaGen has been carried out by Scottish firm Burntisland Fabrications and the final phase of the engineering assembly and mobilisation activity will be undertaken by Harland & Wolff in Belfast before being collected by the Rambiz barge.

Once installed and during the 12 week commissioning phase, a team of environmental scientists from Royal Haskoning, Queen’s University Belfast and St Andrew’s Sea Mammal Research Unit will be in Strangford Lough to closely monitor SeaGen’s operation and its interaction with marine life.

The UK Government’s Department of Business, Enterprise & Regulatory Reform (BERR) has provided valuable support to the SeaGen project. MCT has received grant assistance from BERR for the main part of the project’s development and has received a further £980 000 (E1.3m) investment from the government-funded Technology Strategy Board to cover the additional installation costs and independent performance validation.

MCT md Martin Wright said: “We have carried out extensive engineering and environmental studies to ensure the very best means of installation and operation. As long as the weather is good and there are no last minute operational issues to contend with, we should have SeaGen deployed by the end of March. There is global interest in SeaGen as it will be the first and largest commercial tidal stream device to be installed anywhere in the world, and so we can expect its installation to be a springboard for the further development of the marine energy industry in the UK and the island of Ireland. Looking ahead, MCT intends to manufacture and deploy a series of SeaGen devices in projects off Anglesey and on the Canadian seaboard within the next 2–4 years.”

As EPE went to press, the announcement had been made about the world’s first commercial-scale tidal stream projects, off the coast of Anglesey in North Wales. According to MCT, this exciting and innovative showcase tidal farm scheme would be capable of generating 10.5 MW of clean, green power, drawn entirely from the sea’s major tidal currents.

Npower renewables and MCT will take forward the project through a newly created development company, SeaGen Wales. Subject to successful planning consent and financing, the tidal farm could be commissioned as early as 2011 or 2012.

Wright said: “npower renewables’ extensive experience in developing offshore renewable projects in the UK and Europe will be hugely valuable in taking forward the Anglesey project. Their involvement in SeaGen Wales highlights the very real potential that decentralised tidal energy can make to the UK energy mix. It is also a significant step in commercialising the technology to not only deliver the country’s carbon reduction targets, but also opens up new opportunities for our SeaGen technology to be deployed in other parts of the world.”

Pat Cowling, npower renewables md, said: “We are absolutely delighted to have signed this agreement which positions us, with MCT, at the forefront nationally and globally, of commercial tidal stream energy generation. Tidal stream may be a young technology, but we are convinced by the results of MCT’s work to date, that this is a technology with the potential to make a valuable contribution to UK renewable energy supplies, and the battle against climate change.”

News of the deal came less than a week after the launch of npower renewables’ new parent company, RWE Innogy, which has pooled all of RWE’s renewable energy activities across Europe. The new company has made strong commitments to investing in renewable energy schemes and expanding its portfolio.

Cowling added: “npower renewables’ collaboration with MCT demonstrates RWE Innogy’s commitment to exploring more technologically innovative energy options for the future, as well as continuing to develop our existing and well proven wind and hydro portfolios around the UK.”

Working in collaboration with MCT, npower renewables, the leading UK renewable energy developer and operator, will take the new tidal stream project forward, initially through the consenting stages and with options to extend the partnership further.

It is proposed that the tidal stream project be sited in an area of 25 metre deep open sea known as the Skerries, off the north-west coast of Anglesey, north Wales. The scheme will consist of seven 1.5MW SeaGen turbines, each likely to stand approximately nine metres above sea level. Previous independent scoping studies have identified the Skerries as an ideal location for a tidal stream project, due to its favourable tidal conditions and natural shelter.

The location benefits from good port facilities at Holyhead nearby, proximity to the National Grid facilitating good connection, and good transport links and access, to facilitate construction and maintenance.

Development of the site will start with a full assessment and detailed surveys of the environment and tidal resources, followed by preparation of an outline scheme incorporating the studies’ outcomes.

Studies are about to get started and will last throughout 2008, with a consent application likely to be submitted in mid 2009. Construction and commissioning timescales will be subject to the length of the planning process, but it is anticipated this could take place between 2011 and 2012.

Full consultation will be undertaken with local communities and other relevant stakeholders ahead of any planning application, and all issues raised during the consultation will be fed back into the design process prior to a final consent application.

Read Full Post »

RenewableEnergyDev.com, March 17, 2008

rotech-tidal-turbineAn agreement has been signed to develop a huge tidal power field off the South Korean coast. The joint venture between Lunar Energy of the U.K. and Korean Midland Power Company will develop the tidal power plant in the Wando Hoenggan waterway at a construction cost of £500 million.

The scheme will use power from fast-moving tidal streams to turn a field of 300 60-foot high tidal 1MW turbines sitting on the sea floor. This gives the proposed scheme an operating capacity of 300MW. According to the press release, the power produced from the tidal power plant will generate enough electricity for 200,000 homes and will be completed by the end of 2015. 

The manufacture and installation of the tidal turbines will be carried out by Hyundai Heavy Industries while Aberdeen-based research and development company Rotech Engineering will provide the specialist components.

According to a Lunar Energy spokesman “It is intended that full resource research and feasibility be completed by July 2009 with the installation of a 1MW pilot plant by March 2009.

“Each one megawatt unit has a turbine diameter of 11.5m and a fully ballasted weight in excess of 2500 tons. Rotech tidal turbines can be easily grouped to suit tidal streams in locations worldwide.”

This is the kind of project that could make the U.K.’s proposed £15 billion Severn Barrage project, which has been facing mountains of environmentally based opposition, obsolete. It will also open up an enormous potential for future developments in the oceans worldwide. If proven, we could be witnessing the pioneering of the energy system of the future for coastal cities with potential energy levels in the tens of thousands.

Read Full Post »

FRANK HARTZELL, Contributor to The Christian Science Monitor, March 4, 2008

Fort Bragg, Calif. – From roadless villages in Alaska to remote bends in the Mississippi River, developers are staking claim to thousands of miles of America’s oceans and rivers to test devices that use waves and currents to produce electric power.

Their experiments are launching a new industry that has the potential to supply up to 10 percent of America’s electric needs. But critics say rapid federal approval of the exclusive right to conduct these experiments amounts to a private seizure of communities’ waterfronts.

“This process, especially in Oregon, feels like a new Klondike gold rush,” says environmentalist Richard Charter, a longtime leader in ocean-protection efforts. “There are people filing claims, people jumping claims, and nobody looking at the big picture. The most amazing part of this power gold rush is that it seems to be happening entirely under the national radar.”

Many state and federal agencies, as well as surprised local communities, argue that the permitting process under the Federal Energy Regulatory Commission (FERC) is too rapid and prevents local input.

In Fort Bragg, Calif., Mayor Doug Hammerstrom was surprised last year to find that waters off his town had been claimed by a major utility with a preliminary permit application. The city filed legal motions to participate in the novel process.

“We fear that FERC, as a distant agency, may not consider local concerns,” says Mr. Hammerstrom.

The fast-emerging technology, known as hydrokinetics, is vital to US renewable-energy efforts, supporters say.

“Hydrokinetic technologies, with their great promise and potential to harness abundant supplies of renewable power … fit that bill,” says FERC Commissioner Philip Moeller. He points to Oregon as an example of state and federal collaboration, where Gov. Theodore Kulongoski (D), as well as state and federal lawmakers, have invited researchers, entrepreneurs, and developers into state waters.

As of Feb. 4, FERC had granted 47 permits for ocean, wave, and tidal projects and another 41 were pending. FERC had issued 40 river permits and 55 more were pending.

Experts expect the process to continue to accelerate. Developers are rushing into hydrokinetics because recent innovations in wireless technology and robotics have improved communication between the devices and the shore and narrowed the price gap with wind and solar power. Although it costs an estimated 20 cents to produce a kilowatt hour with hydrokinetics – still about three times too expensive to be commercially viable, more research could lower the price, supporters say. An Idaho study for the US Department of Energy has estimated that hydrokinetics could double the output of conventional dams by using rivers, currents, and waves at some 130,000 sites in all 50 states.

Congress and the Bush administration have not weighed in directly on the process, which has received major government funding all over Europe.

Fifty miles off Vero Beach, Fla., a developer seeks a claim on 1,050 square miles of the Atlantic Ocean to try to harness the Gulf Stream. Tides are already powering hydrokinetic turbines in New York City.

Most of the permits now being sought and issued are for river projects, some of them massive and virtually unknown to local communities, On Jan. 31, for example, FERC issued a preliminary permit for a 3,100-turbine project in the Mississippi River near Cape Girardeau, Mo. On Feb. 1, it granted 15 similar permits for projects on the Mississippi, each featuring more than 1,000 generators to be sunk into the muddy water.

That move provoked criticism from Janet Sternburg, policy coordinator at the Missouri Department of Conservation. “We are very concerned with the potential adverse environmental impacts from this technology on the natural resources of the Mississippi River,” she wrote in a letter to FERC, noting that the applications on file would affect more than 70 miles of the river.

FERC is mulling a plan by a Houston start-up to harness the Yukon River to deliver power to the Alaskan villages of Nulato and Galena, which are not connected by any road to the outside world, much less an electrical grid. While FERC insists it merely issues permits and does not make policy, critics portray the independent entity as more maverick than bureaucrat.

“FERC has a John Wayne self-image, in which it talks only to itself and not to the public it is supposed to serve,” says Elizabeth Mitchell, a retired National Oceanic and Atmospheric Administration attorney, who has taken a lead in challenging FERC’s proposed hydrokinetic energy procedures. “As a result, FERC often shoots from the hip to the detriment of the resources it is meant to protect.”

Some fellow federal and state regulators and experts are calling for FERC to create an entirely new permitting process.

Read Full Post »

JORGE CHAPA, inhabitat.com, December 10, 2007

turbines540One the greatest untapped energy resources in the world is the motion of the ocean. And while floating wind turbines and wave energy generators are being explored throughout the world, there still remains one largely untapped power source, the underwater ocean currents. Well researchers at the Center of Excellence in Ocean Energy Technology have developed what they believe is a technology to allow them to use the Gulf Stream currents that could conceivably cover all of Florida’s energy needs.

The idea is to have underwater turbines placed right in the middle of the Gulf Stream current. The turbines are designed to be about 100 feet in diameter. These will be connected to a buoy that holds the electricity generating equipment. The gulf stream carries billions of gallons per minute, so the impact of these turbines would be minimal if negligible to the current itself.

Now granted, installing all these turbines will take time and significant research, which is why the team is hard at work developing a considerably smaller prototype version that they hope will provide them with enough data to assess whether installing such a system will have an impact in the ocean current, and, just as importantly, all the sealife moving through the area. The prototype will launch in February 2008.

Read Full Post »

DAVID ADAMS, tampabay.com, February 4, 2008

It’s free, has zero emissions and sits off the Florida coast just waiting to be tapped.

A boon to ship captains for centuries, could the Gulf Stream, which runs along Florida’s east coast before curving out across the Atlantic, also be a major source of clean energy for the state?

“This is the closest location on the planet of a major ocean current to a significant urban center of electrical demand,” said Rick Driscoll, director of Florida Atlantic University’s Center of Excellence Ocean Energy Technology in Dania Beach, known as Sea Tech. “Its potential is immeasurable.”

Driscoll envisages a vast field of thousands of underwater propeller turbines tethered to the ocean floor – imagine a wind farm hundreds of feet under the sea – slowly spinning in the current.

Some scientists say the Gulf Stream’s vast energy content could provide up to one-third of the state’s electricity needs, equivalent to six nuclear power stations. Realistically, that potential remains something of a dream right now. Of all the emerging alternative technologies, ocean energy is perhaps the least advanced. But it may be starting to catch on.

“Ocean energy is where wind was 20 years ago,” Driscoll said. “There are a lot of concepts and designs.”
Scientists have been studying the power of the Gulf Stream for centuries, but entrepreneurs have only recently begun to take an interest. Projects are just beginning to pop up around the country, in San Francisco Bay, New York’s Hudson River and now Florida’s east coast, though none are in commercial operation yet.

Sea Tech’s ocean energy research is suddenly attracting intense interest. It got a major boost in 2006 with a $5-million grant from the state. It has also formed an alliance with Florida Power & Light Co. Last week Gov. Charlie Crist proposed a $10-million grant in his new budget, and he made his second visit to Sea Tech on Thursday to show his commitment.

“This is a resource that is boundless. I want to do everything I can to help,” Crist said. “It’s a national security issue. The more we can diversify our energy resources, the more independent it will make us.”

Among those intrigued by the concept is influential Tampa Bay area developer and former Ambassador Mel Sembler. Sembler first heard about the potential of the Gulf Stream several years ago when he was approached by an ocean energy pioneer, Jim Dehlsen, who patented one of the earliest turbine designs in 2001.

“I think it’s a fabulous idea,” Sembler said. “It’s so consistent and always in the same general area. To me it is Florida’s answer for alternative energy. We desperately need it.”

Sea Tech began work on ocean energy at its Dania Beach campus in 1999 under the leadership of Driscoll, 37, who holds a dual doctorate in mechanical engineering and oceanography.

Driscoll said the center’s first prototype of an ocean current turbine, 10 feet in diameter, will be deployed later this year. Researchers want to see how the turbines behave in the current and what effect the massive blades might have on migratory fish species.

Early evidence suggests fish just swim around the blades, which rotate at speeds of up to 60 revolutions a minute.
“We see ourselves as the facilitator and a database to help provide the expertise that is needed,” Driscoll said.
Driscoll’s team is creating a profile of the Gulf Stream by placing acoustic Doppler equipment on the ocean bottom. It measures movement by firing sound pulses that reflect off particulate matter in the water.

At its closest, the Gulf Stream is 15 miles offshore and stretches 20 to 30 miles into the Atlantic. It varies from 320 to 650 feet deep, maintaining an average speed of about 5 mph. Crucial to any attempt to harness its energy, the current is confined to an identifiable area. “It doesn’t meander very much,” Driscoll said.

While wind farms have attracted opposition from bird lovers, the notion of undersea turbines has so far not caused a stir. That may be because the Gulf Stream is not especially hospitable to marine life, Driscoll said. Its warmer temperature causes evaporation, making the water saltier.

“I have not heard any concerns,” said Mark Ferrulo, director of Environment Florida, one of the state’s leading nature protection advocacy groups. “If anything, there’s a lot of excitement around this emerging technology.”

Because 70 percent of Florida’s population lives within 10 miles of the ocean, advocates say ocean energy is ideal. Its proximity offshore means reduced transmission costs.

Utilities like the concept as it offers the potential of a steady, reliable supply, unlike solar and wind energy, which are unpredictable due to variable weather conditions.

The potential energy “capture area” stretches about 100 to 200 miles from the lower Florida Keys to St. Lucie County, with the best potential around Miami-Dade, Broward and Palm Beach counties. “This is the sweet spot down here,” Driscoll said.

Read Full Post »

BRIAN VANITY, insurgent49, September 1, 2006

As any mariner knows, the oceans are packed full of energy. The energy contained in the seas can destroy ships but, if harnessed correctly, can also be used to generate electricity.

There are several types of energy, which can be extracted from the Alaska’s ocean waters, the two most promising being tidal, and wave energy. Tidal energy is derived from the cyclic rise and fall of the ocean’s tides, while wave energy is harnessed from rapid rise and fall motion of the ocean waves, which are mostly created by the wind. Ocean current energy is extracted from deep-level currents, which are caused by the thermal circulation of the earth’s weather system.

Tidal, wave, and ocean current energy are directly related to conventional hydroelectric power, in that they are all variations of the mechanical energy of moving water. Offshore wind energy is also considered ocean energy, and several offshore wind farms have been built in Europe’s North Sea. In Alaska today, the only wind energy proposals in the state involve on-shore projects.

Tidal Energy

Tidal power uses the energy of the moving ocean tides, which are driven by the gravitational pull of the moon and, to a lesser extent, the sun. The power output is variable, but predictable years in advance.

The natural ebb and flow of the tides potentially offers a huge future energy source for Alaska. In contrast to other variable renewable energy sources such as wind power, the tides are predictable.

Although tidal energy was first used in European grain mills hundreds of years ago, only a handful of tidal power plants exist in the world today, so operational experience is limited. These existing tidal plants are barrage-style, which involve the capital-intensive construction of large tidal dams across an estuary or inlet. Such large structures that block tidal flows usually have significant environmental impacts, similar to those of large dams on rivers.

The largest existing tidal power plant, a 240-megawatt MW facility on the La Rance estuary in northern France, has caused negative environmental effects since being completed in 1966. The only other large-scale tidal power plant in operation today is the 20 MW Annapolis Royal facility, located along the Bay of Fundy in Nova Scotia.

Tidal current energy, also called ‘in-stream’ or ‘hydrokinetic’ tidal energy, is a different form of tidal power generation that does not require barrages or dams. In constricted ocean channels or inlets, the changing tidal water level can create strong tidal currents. Low-impact tidal current turbines, which and resemble underwater versions of wind turbines, are still under development. Research, development, and capital costs are high since the technology is mostly in the experimental stage, and have borrowed from many advanced in wind energy technology.

Several tidal energy sites are under investigation across the USA. In Washington, the city of Tacoma is investigating the tidal energy potential of the Tacoma Narrows of Puget Sound. The company Verdant Power (www.verdantpower.com) is installing six 36-kW tidal turbines in the East River of New York City, with the installation of the first two turbines to be completed by the end of this year. The six tidal turbines will power a shopping center and parking garage on Roosevelt Island, which is located between the boroughs of Queens and Manhattan.

In Europe, an array of tidal turbines is also being built in northern Norway (www.e-tidevannsenergi.com), with 540 kW of generation capacity to be installed by the end of 2006. Lunar Energy (www.lunarenergy.co.uk), HydroVenturi (www.hydroventuri.com) and Marine Current Turbines (www.marineturbines.com) are three promising tidal current turbine upstart firms from the UK, where the government is very supportive of ocean energy research.

Both wave and tidal energy devices will soon begin tests at the new European Marine Energy Centre (www.emec.org.uk), which is located in the Orkneys Islands north of Scotland. The Scottish government has pledged that the country generate 18% of its power from renewable resources by 2010, and this new marine energy testing center will be the largest such facility in the world.

Alaska has many sites with strong tides along its lengthy coast, including both large tidal ranges between high and low tides, and strong tidal currents. Parts of the Alaska coastline have some of the strongest tides in the world, including the upper Cook Inlet around Anchorage. Bristol Bay, Cordova, Seldovia, Angoon and other locations in Southeast Alaska also have strong tidal currents.

The tidal power potential of Alaska has been studied since the 1950s, although no tidal energy systems yet exist in Alaska. Over the past several decades, a number of tidal energy studies have been conducted on Cook Inlet. All of these proposed the construction of large concrete barrages (seawater dams) and the use of conventional bulb-type, “low-head” hydropower turbines. Various ‘barrage schemes’ for upper Cook Inlet were studied up until the early 1980s.

Tidal Electric of Alaska’s tidal energy feasibility study for Cordova proposed a large, concrete-enclosed ‘tidal tank’, a modification on the traditional tidal barrage, and would have still used conventional bulb-type turbines. A 1998 feasibility study conducted in Cordova estimated a $14 million initial cost for a 5000-kW system, or $2800 per kW of installed capacity. Electricity generated from the nearby 6000-kW Power Creek hydroelectric project, which was completed in 2001, was found be more economical. The Cordova tidal energy studies between 1998 and 2000 were the most recent investigations conducted, though did not lead to any development.

Hydrokinetic or in-stream current energy has only recently been under investigation for use in Alaska. The Underwater Electric Kite Corporation (www.uekus.com) has proposed an in-stream turbine installation for the town of Eagle on the Yukon River, with 270 kW to be installed. This project was first proposed in 2003, though still has not received funding. Next door in British Columbia, the provincial electric utility BC Hydro commissioned a 2002 study on tidal current energy, which concluded that the theoretical tidal current power potential of the BC coast is just over 2200 MW.

Knik Arm has the potential of being a good site for a tidal current power plant, with strong currents four times each day. Also, Elmendorf Air Force Base, on the east side of the arm, has significant electrical infrastructure and demand for power. The site also has a close proximity to the Port of Anchorage, which would serve as a base of operations for both construction and maintenance.

The currents and depth are good for the site, but there is are several other concerns that could derail a project, most importantly concern over marine mammals in Knik Arm. Upper Cook Inlet’s Beluga whale count was low this year, worrying marine biologists. A recent report by the Electric Power Research Institute (EPRI) recommended that ‘Alaskan stakeholders’ commission a studies on sub-surface ice behavior, future trends in seabed movement, conduct a site-specific regulatory and environmental assessment, and more detailed tidal current velocity measurements. Deploying an array of tidal current turbines at the Cairn Point site in Knik Arm could produce an average of 17 MW or power from the tidal currents, enough to power over 10,000 average Anchorage homes.

The Alaska tidal energy rush has already started. One upstart tidal energy developer, the Miami-based Ocean Renewable Power Company (www.oceanrenewablepower.com), has recently applied for preliminary permits with the Federal Energy Regulatory Commission (FERC) at seven Alaska locations. However, they already have a bad reputation within the close-knit tidal energy industry.

If approved, a preliminary FERC permit gives a developer three years exclusive access to a site. In the case of these two firms, it is likely that they only intend to “bank” the sites and auction them off for its own private gain when tidal technology matures a few years down the line. Many in the industry are accusing the Oceana and Ocean Power Renewable companies of blocking access to prime sites by applying for permits with no intention of developing them.

Sean O’Neill, president of a new trade group called the Ocean Renewable Energy Coalition recently told Bloomberg News that “Speculation, and the fact it could hold up a site for anywhere from three to six years, that certainly is not good for the industry… Any company that is banking sites should be tarred and feathered.” So in all likelihood, lawsuits over Alaskan tidal energy sites are quite possible for the near future. For more information, read the Bloomberg News article on the web: (www.renewableenergyaccess.com/rea/news/story?id=45668&src=rss).

Wave Energy

Though often co-mingled, wave power is a diffierent technology than tidal power generation. However, like tidal energy technology, wave power generation is not yet a widely employed technology, with only a few experimental sites in existence. Worldwide, wave power could yield much more energy than tidal power.

The Earth’s total tidal dissipation (friction, measured by the slowing of the planet’s rotation) is 2.5 terawatts, or about the same amount of power that would be gennerated by 2,500 typical nuclear power plants. The energy potential of waves is certainly greater, and wave power can be exploited in many more locations than tidal energy.

Large wave energy potential is estimated for Alaska’s, thousands of miles of coastline, which is more than the length of coast for the other 49 states combined. Some of the most powerful waves in the world are found in Alaska, and the southern Pacific coastal arc of Alaska (stretching from Ketchikan to Attu) has a theoretical wave energy potential estimated to be 1,250 TWh per year, or 300 times more electricity consumed by Alaskans today.

There are a wide variety of wave energy conversion technologies being tested, ranging from “bobbing corks” to giant metal “sea snakes”. The Pelamis Wave Energy Converter is being developed by an upstart wave energy technology company from Edinburgh, Scotland (www.oceanpd.com/default.html ).

Ocean Power Delivery (OPD), developer of the Pelamis device, has secured over $23.6 million of new investment from a consortium of new and existing investors. In May 2005, OPD signed an order with a Portuguese consortium to deliver the initial phase of the world’s first commercial wave-farm. OPD recently delivered the first three production machines to Portugal, where they will be installed following final assembly and commissioning by the end of 2006. The three units are planned to have a total generating capacity of 2.25 MW, or about enough to power a town of 1000 people.

Another upstart wave energy company, the AquaEnergy Group (www.aquaenergygroup.com ), is working on a four-“bouy” installation with one MW of capacity, to be located three miles offshore of Makah Bay, Washington. The wave energy upstart Ocean Power Technologies (www.oceanpowertechnologies.com ) has already deployed its PowerBouy in Hawaii and New Jersey, and is planning an installation in northern Spain. Other wave power generation projects are under development off the coasts of Italy, Spain, South Africa and Oregon.

The Future for Ocean Energy in Alaska

Knik Arm is the most promising commerical tidal energy site in the state, due to its close proximity to Anchorage. Also, offshore wind or tidal turbines mounted on abandoned oil and gas platforms in Cook Inlet, though new underwater electric transmission cables would be needed. To find more promising sites, a statewide study of Alaska’s tidal and wave energy potential is needed. In the future, utility-scale tidal power could also help the urban Alaska energy situation, which is faced with looming increases in natural gas prices. Tidal energy research and development in Alaska could establish the state as a world leader in ocean power technology.

Given the length of its coastline and the strength of the seas, both wave and tidal energy are well worth exploring for Alaska’s future energy needs

Read Full Post »

Follow

Get every new post delivered to your Inbox.

Join 31 other followers